Note: You can install the package locally with:
npm install js-pytorch
npm install js-pytorch
.<head>
of your HTML file:<script src="https://cdnjs.cloudflare.com/ajax/libs/js-pytorch/0.7.2/js-pytorch-browser.js" integrity="sha512-l22t7GnqXvHBMCBvPUBdFO2TEYxnb1ziCGcDQcpTB2un16IPA4FE5SIZ8bUR+RwoDZGikQkWisO+fhnakXt9rg==" crossorigin="anonymous" referrerpolicy="no-referrer"></script>
<script>
in your HTML file:<head> <title>My Project</title> <!-- New script goes here --> <script src="https://cdnjs.cloudflare.com/ajax/libs/js-pytorch/0.7.2/js-pytorch-browser.js" integrity="sha512-l22t7GnqXvHBMCBvPUBdFO2TEYxnb1ziCGcDQcpTB2un16IPA4FE5SIZ8bUR+RwoDZGikQkWisO+fhnakXt9rg==" crossorigin="anonymous" referrerpolicy="no-referrer"> </script> <!----> </head> <body> <script> let x = torch.randn([10,5]) let linear = new torch.nn.Linear(5,1,'gpu',true) let z = linear.forward(x) console.log(z.data) </script> </body>
// Require the Library if running in node (not necessary in the browser): const { torch } = require("js-pytorch"); // Pass device as an argument to a Tensor or nn.Module (same as PyTorch): const device = 'gpu'; // Instantiate Tensors: let x = torch.randn([8, 4, 5]); let w = torch.randn([8, 5, 4], true, device); let b = torch.tensor([0.2, 0.5, 0.1, 0.0], true); // Make calculations: let out = torch.matmul(x, w); out = torch.add(out, b); // Compute gradients on whole graph: out.backward(); // Get gradients from specific Tensors: console.log(w.grad); console.log(b.grad);Complex Autograd Example (Transformer):
// Require the Library if running in node (not necessary in the browser): const { torch } = require("js-pytorch"); const nn = torch.nn; const optim = torch.optim; const device = 'gpu'; // Define training hyperparameters: const vocab_size = 52; const hidden_size = 32; const n_timesteps = 16; const n_heads = 4; const dropout_p = 0; const batch_size = 8; // Create Transformer decoder Module: class Transformer extends nn.Module { constructor(vocab_size, hidden_size, n_timesteps, n_heads, dropout_p, device) { super(); // Instantiate Transformer's Layers: this.embed = new nn.Embedding(vocab_size, hidden_size); this.pos_embed = new nn.PositionalEmbedding(n_timesteps, hidden_size); this.b1 = new nn.Block(hidden_size, hidden_size, n_heads, n_timesteps, dropout_p, device); this.b2 = new nn.Block(hidden_size, hidden_size, n_heads, n_timesteps, dropout_p, device); this.ln = new nn.LayerNorm(hidden_size); this.linear = new nn.Linear(hidden_size, vocab_size, device); } forward(x) { let z; z = torch.add(this.embed.forward(x), this.pos_embed.forward(x)); z = this.b1.forward(z); z = this.b2.forward(z); z = this.ln.forward(z); z = this.linear.forward(z); return z; } } // Instantiate your custom nn.Module: const model = new Transformer(vocab_size, hidden_size, n_timesteps, n_heads, dropout_p, device); // Define loss function and optimizer: const loss_func = new nn.CrossEntropyLoss(); const optimizer = new optim.Adam(model.parameters(), (lr = 5e-3), (reg = 0)); // Instantiate sample input and output: let x = torch.randint(0, vocab_size, [batch_size, n_timesteps, 1]); let y = torch.randint(0, vocab_size, [batch_size, n_timesteps]); let loss; // Training Loop: for (let i = 0; i < 40; i++) { // Forward pass through the Transformer: let z = model.forward(x); // Get loss: loss = loss_func.forward(z, y); // Backpropagate the loss using torch.tensor's backward() method: loss.backward(); // Update the weights: optimizer.step(); // Reset the gradients to zero after each training step: optimizer.zero_grad(); // Print loss at every iteration: console.log(`Iter ${i} - Loss ${loss.data[0].toFixed(4)}`) }Saving and Loading models:
// Instantiate your model: const model = new Transformer(vocab_size, hidden_size, n_timesteps, n_heads, dropout_p); // Train the model: trainModel(model); // Save model to JSON file: torch.save(model, 'model.json') // To load, instantiate placeHolder using the original model's architecture: const placeHolder = new Transformer(vocab_size, hidden_size, n_timesteps, n_heads, dropout_p); // Load weights into placeHolder: const newModel = torch.load(placeHolder, 'model.json')
npm run build
. CJS and ESM modules and index.d.ts
will be output in the dist/
folder.npm run lint
.npm test
.npm run prettier
.tests/benchmarks/
directory. Run all benchmarks with npm run bench
and save new benchmarks with npm run bench:update
.develop
branch, and also feel free to reach out. I'll try to answer as soon as possible.RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4