parameters::model_parameters
appears to use the wrong degrees of freedom to compute p values in this model, which results in an overly conservative test:
library(parameters) library(fixest) library(carData) d <- Greene d$dv <- ifelse(Greene$decision == 'yes', 1, 0) mod <- feglm(dv ~ language | judge, data = d, cluster = c('judge'), family = 'logit') # many degrees of freedom insight::get_df(mod) # [1] 382 # normal and t give pretty similar results pnorm(-2.48139) * 2 # [1] 0.01308711 pt(-2.48139, df = insight::get_df(mod)) * 2 # [1] 0.0135165 # but parameters::model_parameters uses 9 DF pt(-2.48139, df = 9) * 2 # [1] 0.03491173 model_parameters(mod) # # Fixed Effects # # Parameter | Log-Odds | SE | 95% CI | z | df | p # ------------------------------------------------------------------------- # language [French] | -0.68 | 0.28 | [-1.31, -0.06] | -2.48 | 9 | 0.035 #
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4