@@ -104,17 +104,17 @@ select.explore <- function(object,
104
104
BF_cut = 3,
105
105
alternative = "two.sided",
106
106
...){
107
-
# rename
107
+
## rename
108
108
x <- object
109
109
110
-
# hyp probability
110
+
## hyp probability
111
111
hyp_prob <- BF_cut / (BF_cut + 1)
112
112
113
-
# posterior samples
114
-
post_samp <- x$post_samp
113
+
## posterior samples
114
+
post_samp <- x$post_samp
115
115
116
-
# prior samples
117
-
prior_samp <- x$prior_samp
116
+
## prior samples
117
+
prior_samp <- x$prior_samp
118
118
119
119
120
120
@@ -129,7 +129,7 @@ select.explore <- function(object,
129
129
130
130
# prior
131
131
prior_sd <- apply(prior_samp$fisher_z[,,(51:x$iter)], 1:2, sd)
132
-
prior_dens <- dnorm(0, 0, mean(prior_sd[upper.tri(diag(3))]))
132
+
prior_dens <- dnorm(0, 0, mean(prior_sd[upper.tri(diag(nrow(prior_sd)))]))
133
133
134
134
# BF
135
135
BF_10_mat <- prior_dens / post_dens
@@ -146,9 +146,9 @@ select.explore <- function(object,
146
146
diag(Adj_10) <- 0
147
147
148
148
# returned object
149
-
returned_object = list(pcor_mat_zero = post_mean * Adj_10,
150
-
pcor_mat = round(post_mean, 3),
151
-
pcor_sd = round(post_sd, 3),
149
+
returned_object = list(pcor_mat_zero = tanh(post_mean) * Adj_10,
150
+
pcor_mat = round(tanh(post_mean), 3),
151
+
pcor_sd_fisher = round(post_sd, 3),
152
152
Adj_10 = Adj_10,
153
153
Adj_01 = Adj_01,
154
154
BF_10 = BF_10_mat,
@@ -168,7 +168,7 @@ select.explore <- function(object,
168
168
# posterior
169
169
post_sd <- apply(post_samp$fisher_z[,,(51:x$iter)], 1:2, sd)
170
170
post_mean <- apply(post_samp$fisher_z[,,(51:x$iter)], 1:2, mean)
171
-
#x$pcor_mat
171
+
#x$pcor_mat
172
172
post_dens <- dnorm(0, post_mean, post_sd )
173
173
174
174
# prior
@@ -196,9 +196,9 @@ select.explore <- function(object,
196
196
197
197
# returned object
198
198
returned_object = list(
199
-
pcor_mat_zero = post_mean * Adj_20,
200
-
pcor_mat = round(post_mean, 3),
201
-
pcor_sd = round(post_sd, 3),
199
+
pcor_mat_zero = tanh(post_mean) * Adj_20,
200
+
pcor_mat = round(tanh(post_mean), 3),
201
+
pcor_sd_fisher = round(post_sd, 3),
202
202
Adj_20 = Adj_20,
203
203
Adj_02 = Adj_02,
204
204
BF_20 = BF_20_mat,
@@ -217,7 +217,7 @@ select.explore <- function(object,
217
217
218
218
# posterior
219
219
post_sd <- apply(post_samp$fisher_z[,,(51:x$iter)], 1:2, sd)
220
-
post_mean <- x$pcor_mat
220
+
post_mean <- apply(post_samp$fisher_z[,,(51:x$iter)], 1:2, mean)
221
221
post_dens <- dnorm(0, post_mean, post_sd )
222
222
223
223
# prior
@@ -245,9 +245,9 @@ select.explore <- function(object,
245
245
246
246
# returned object
247
247
returned_object = list(
248
-
pcor_mat_zero = post_mean * Adj_20,
249
-
pcor_mat = round(post_mean, 3),
250
-
pcor_sd = round(post_sd, 3),
248
+
pcor_mat_zero = tanh(post_mean) * Adj_20,
249
+
pcor_mat = round(tanh(post_mean), 3),
250
+
pcor_sd_fisher = round(post_sd, 3),
251
251
Adj_20 = Adj_20,
252
252
Adj_02 = Adj_02,
253
253
BF_20 = BF_20_mat,
@@ -291,7 +291,7 @@ select.explore <- function(object,
291
291
292
292
# posterior
293
293
post_sd <- apply(post_samp$fisher_z[,,(51:x$iter)], 1:2, sd)
294
-
post_mean <- x$pcor_mat
294
+
post_mean <- apply(post_samp$fisher_z[,,(51:x$iter)], 1:2, mean)
295
295
post_dens <- dnorm(0, post_mean, post_sd)
296
296
297
297
# prior
@@ -339,8 +339,8 @@ select.explore <- function(object,
339
339
pos_mat = pos_mat,
340
340
null_mat = null_mat,
341
341
alternative = alternative,
342
-
pcor_mat = round(post_mean, 3),
343
-
pcor_sd = round(post_sd, 3),
342
+
pcor_mat = round(tanh(post_mean), 3),
343
+
pcor_sd_fisher = round(post_sd, 3),
344
344
call = match.call(),
345
345
prob = hyp_prob,
346
346
type = x$type,
@@ -502,27 +502,27 @@ summary.select.explore <- function(object,
502
502
if(x$alternative == "two.sided"){
503
503
504
504
post_mean <- x$pcor_mat[upper.tri(x$pcor_mat)]
505
-
post_sd <- x$pcor_sd[upper.tri(x$pcor_sd)]
505
+
post_sd <- x$pcor_sd_fisher[upper.tri(x$pcor_sd_fisher)]
506
506
prob_H1 <- x$BF_10[upper.tri(x$BF_10)] / (x$BF_10[upper.tri(x$BF_10)] + 1)
507
507
prob_H0 <- 1 - prob_H1
508
508
summ <- data.frame(
509
509
Relation = mat_names,
510
510
Post.mean = post_mean,
511
-
Post.sd = post_sd,
511
+
Post.sd.fisher = post_sd,
512
512
Pr.H0 = round(prob_H0, 3),
513
513
Pr.H1 = round(prob_H1, 3)
514
514
)
515
515
516
516
} else if (x$alternative == "greater"){
517
517
518
518
post_mean <- x$pcor_mat[upper.tri(x$pcor_mat)]
519
-
post_sd <- x$pcor_sd[upper.tri(x$pcor_sd)]
519
+
post_sd <- x$pcor_sd_fisher[upper.tri(x$pcor_sd_fisher)]
520
520
prob_H1 <- x$BF_20[upper.tri(x$BF_20)] / (x$BF_20[upper.tri(x$BF_20)] + 1)
521
521
prob_H0 <- 1 - prob_H1
522
522
summ <- data.frame(
523
523
Relation = mat_names,
524
524
Post.mean = post_mean,
525
-
Post.sd = post_sd,
525
+
Post.sd.fisher = post_sd,
526
526
Pr.H0 = round(prob_H0, 3),
527
527
Pr.H1 = round(prob_H1, 3)
528
528
)
@@ -532,13 +532,13 @@ summary.select.explore <- function(object,
532
532
} else if (x$alternative == "less" | x$alternative == "greater"){
533
533
534
534
post_mean <- x$pcor_mat[upper.tri(x$pcor_mat)]
535
-
post_sd <- x$pcor_sd[upper.tri(x$pcor_sd)]
535
+
post_sd <- x$pcor_sd_fisher[upper.tri(x$pcor_sd_fisher)]
536
536
prob_H1 <- x$BF_20[upper.tri(x$BF_20)] / (x$BF_20[upper.tri(x$BF_20)] + 1)
537
537
prob_H0 <- 1 - prob_H1
538
538
summ <- data.frame(
539
539
Relation = mat_names[upper.tri(mat_names)],
540
540
Post.mean = post_mean,
541
-
Post.sd = post_sd,
541
+
Post.sd.fisher = post_sd,
542
542
Pr.H0 = round(prob_H0, 3),
543
543
Pr.H1 = round(prob_H1, 3)
544
544
)
@@ -549,12 +549,12 @@ summary.select.explore <- function(object,
549
549
550
550
summ <- cbind.data.frame( x$post_prob[,1],
551
551
x$pcor_mat[upper.tri(x$pcor_mat)],
552
-
x$pcor_sd[upper.tri(x$pcor_sd)],
552
+
x$pcor_sd_fisher[upper.tri(x$pcor_sd_fisher)],
553
553
round(x$post_prob[,2:4], 3))
554
554
555
555
colnames(summ) <- c("Relation",
556
556
"Post.mean",
557
-
"Post.sd",
557
+
"Post.sd.fisher",
558
558
"Pr.H0",
559
559
"Pr.H1",
560
560
"Pr.H2")
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4