A Docling integration for LangChain.
Simply install langchain-docling
from your package manager, e.g. pip:
pip install langchain-docling
To develop for Docling Core, you need Python >=3.9 <=3.13 and uv. You can then install from your local clone's root dir:
Basic usage of DoclingLoader
looks as follows:
from langchain_docling import DoclingLoader FILE_PATH = ["https://arxiv.org/pdf/2408.09869"] # Docling Technical Report loader = DoclingLoader(file_path=FILE_PATH) docs = loader.load()
When initializing a DoclingLoader
, you can use the following parameters:
file_path
: source as single str (URL or local file) or iterable thereofconverter
(optional): any specific Docling converter instance to useconvert_kwargs
(optional): any specific kwargs for conversion executionexport_type
(optional): export mode to use: ExportType.DOC_CHUNKS
(default) or ExportType.MARKDOWN
md_export_kwargs
(optional): any specific Markdown export kwargs (for Markdown mode)chunker
(optional): any specific Docling chunker instance to use (for doc-chunk mode)meta_extractor
(optional): any specific metadata extractor to useFor more details and usage examples, check out this page.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4