A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://github.com/cocoindex-io/cocoindex below:

cocoindex-io/cocoindex: Data transformation framework for AI. Ultra performant, with incremental processing.

Data transformation for AI

Ultra performant data transformation framework for AI, with core engine written in Rust. Support incremental processing and data lineage out-of-box. Exceptional developer velocity. Production-ready at day 0.

⭐ Drop a star to help us grow!

Deutsch | English | Español | français | 日本語 | 한국어 | Português | Русский | 中文

CocoIndex makes it effortless to transform data with AI, and keep source data and target in sync. Whether you’re building a vector index for RAG, creating knowledge graphs, or performing any custom data transformations — goes beyond SQL.

Just declare transformation in dataflow with ~100 lines of python

# import
data['content'] = flow_builder.add_source(...)

# transform
data['out'] = data['content']
    .transform(...)
    .transform(...)

# collect data
collector.collect(...)

# export to db, vector db, graph db ...
collector.export(...)

CocoIndex follows the idea of Dataflow programming model. Each transformation creates a new field solely based on input fields, without hidden states and value mutation. All data before/after each transformation is observable, with lineage out of the box.

Particularly, developers don't explicitly mutate data by creating, updating and deleting. They just need to define transformation/formula for a set of source data.

Native builtins for different source, targets and transformations. Standardize interface, make it 1-line code switch between different components.

CocoIndex keep source data and target in sync effortlessly.

It has out-of-box support for incremental indexing:

If you're new to CocoIndex, we recommend checking out

  1. Install CocoIndex Python library
  1. Install Postgres if you don't have one. CocoIndex uses it for incremental processing.

Follow Quick Start Guide to define your first indexing flow. An example flow looks like:

@cocoindex.flow_def(name="TextEmbedding")
def text_embedding_flow(flow_builder: cocoindex.FlowBuilder, data_scope: cocoindex.DataScope):
    # Add a data source to read files from a directory
    data_scope["documents"] = flow_builder.add_source(cocoindex.sources.LocalFile(path="markdown_files"))

    # Add a collector for data to be exported to the vector index
    doc_embeddings = data_scope.add_collector()

    # Transform data of each document
    with data_scope["documents"].row() as doc:
        # Split the document into chunks, put into `chunks` field
        doc["chunks"] = doc["content"].transform(
            cocoindex.functions.SplitRecursively(),
            language="markdown", chunk_size=2000, chunk_overlap=500)

        # Transform data of each chunk
        with doc["chunks"].row() as chunk:
            # Embed the chunk, put into `embedding` field
            chunk["embedding"] = chunk["text"].transform(
                cocoindex.functions.SentenceTransformerEmbed(
                    model="sentence-transformers/all-MiniLM-L6-v2"))

            # Collect the chunk into the collector.
            doc_embeddings.collect(filename=doc["filename"], location=chunk["location"],
                                   text=chunk["text"], embedding=chunk["embedding"])

    # Export collected data to a vector index.
    doc_embeddings.export(
        "doc_embeddings",
        cocoindex.targets.Postgres(),
        primary_key_fields=["filename", "location"],
        vector_indexes=[
            cocoindex.VectorIndexDef(
                field_name="embedding",
                metric=cocoindex.VectorSimilarityMetric.COSINE_SIMILARITY)])

It defines an index flow like this:

More coming and stay tuned 👀!

For detailed documentation, visit CocoIndex Documentation, including a Quickstart guide.

We love contributions from our community ❤️. For details on contributing or running the project for development, check out our contributing guide.

Welcome with a huge coconut hug 🥥⋆。˚🤗. We are super excited for community contributions of all kinds - whether it's code improvements, documentation updates, issue reports, feature requests, and discussions in our Discord.

Join our community here:

We are constantly improving, and more features and examples are coming soon. If you love this project, please drop us a star ⭐ at GitHub repo to stay tuned and help us grow.

CocoIndex is Apache 2.0 licensed.


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4