A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://github.com/ccerhan/LibSVMsharp below:

ccerhan/LibSVMsharp: C# wrapper of LibSVM

LibSVMsharp is a simple and easy-to-use C# wrapper for Support Vector Machines. This library uses LibSVM version 3.23 with x64 support, released on 15th of July in 2018.

For more information visit the official libsvm webpage.

To install LibSVMsharp, download the Nuget package or run the following command in the Package Manager Console:

PM> Install-Package LibSVMsharp

LibSVMsharp is released under the MIT License and libsvm is released under the modified BSD Lisence which is compatible with many free software licenses such as GPL.

SVMProblem problem = SVMProblemHelper.Load(@"dataset_path.txt");
SVMProblem testProblem = SVMProblemHelper.Load(@"test_dataset_path.txt");

SVMParameter parameter = new SVMParameter();
parameter.Type = SVMType.C_SVC;
parameter.Kernel = SVMKernelType.RBF;
parameter.C = 1;
parameter.Gamma = 1;

SVMModel model = SVM.Train(problem, parameter);

double[] target = new double[testProblem.Length];
for (int i = 0; i < testProblem.Length; i++)
  target[i] = SVM.Predict(model, testProblem.X[i]);

double accuracy = SVMHelper.EvaluateClassificationProblem(testProblem, target);
Simple Classification with Extension Methods
SVMProblem problem = SVMProblemHelper.Load(@"dataset_path.txt");
SVMProblem testProblem = SVMProblemHelper.Load(@"test_dataset_path.txt");

SVMParameter parameter = new SVMParameter();

SVMModel model = problem.Train(parameter);

double[] target = testProblem.Predict(model);
double accuracy = testProblem.EvaluateClassificationProblem(target);
SVMProblem problem = SVMProblemHelper.Load(@"dataset_path.txt");
SVMProblem testProblem = SVMProblemHelper.Load(@"test_dataset_path.txt");

SVMParameter parameter = new SVMParameter();

SVMModel model = problem.Train(parameter);

double[] target = testProblem.Predict(model);
double correlationCoeff;
double meanSquaredErr = testProblem.EvaluateRegressionProblem(target, out correlationCoeff);

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4