Validates the pandas object such as DataFrame and Series. And this can define validator like django form class.
Why bugs occur in Data Wrangling with pandasWhen we wrangle our data with pandas, We use DataFrame frequently. DataFrame is very powerfull and easy to handle. But DataFrame has no it's schema, so It allows irregular values without being aware of it. We are confused by these values and affect the results of data wrangling.
pandas-validator offers the functions for validating DataFrame or Series objects.
import pandas as pd import pandas_validator as pv class SampleDataFrameValidator(pv.DataFrameValidator): row_num = 5 column_num = 2 label1 = pv.IntegerColumnValidator('label1', min_value=0, max_value=10) label2 = pv.FloatColumnValidator('label2', min_value=0, max_value=10) validator = SampleDataFrameValidator() df = pd.DataFrame({'label1': [0, 1, 2, 3, 4], 'label2': [5.0, 6.0, 7.0, 8.0, 9.0]}) validator.is_valid(df) # True. df = pd.DataFrame({'label1': [11, 12, 13, 14, 15], 'label2': [5.0, 6.0, 7.0, 8.0, 9.0]}) validator.is_valid(df) # False. df = pd.DataFrame({'label1': [0, 1, 2], 'label2': [5.0, 6.0, 7.0]}) validator.is_valid(df) # False
$ pip install pandas_validator
Please see the following demo written by ipython notebook.
This software is licensed under the MIT License.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4