A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://github.com/arives/rr2 below:

arives/rr2: R2 for correlated data; see https://academic.oup.com/sysbio/advance-article/doi/10.1093/sysbio/syy060/5098616

This package provides three R2s for statistical models with correlated errors including classes: ‘lmerMod’ (LMM), ‘glmerMod’ (GLMM), ‘phylolm’ (Phylogenetic GLS), and ‘binaryPGLMM/phyloglm/communityPGLMM’ (Phylogenetic Logistic Regression). Detailed technical descriptions can be found in Ives 2018.

This package can be installed with:

install.packages("rr2")

# or install the latest version
# install.packages("devtools")
devtools::install_github("arives/rr2")

This package has three main functions: R2.resid(), R2.lik(), and R2.pred(). You can use them individually in the form of, e.g., R2.resid(mod, mod.r) where mod is the full model and mod.r is the reduced model for partial R2s. If you do not include the reduced model mod.r, then the appropriate model with just the intercept is used to give the total R2. When using R2.resid and R2.pred with PGLS, you need to include the phylo object containing a phylogenetic tree, e.g., R2.resid(mod, mod.r, phy = phy).

You can calculate all three R2s at the same time with R2(mod, mod.r). You can also specify which R2(s) to calculate within this function by turning off unwanted methods, e.g., R2(mod, mod.r, resid = FALSE) or R2(mod, mod.r, pred = FALSE).

This package also has some helper functions such as inv.logit(), partialR2(), and partialR2adj().

Models Available.R2s LM partialR2, partialR2adj LM R2.pred, R2.resid, R2.lik GLM R2.pred, R2.resid, R2.lik LMM: lmerMod R2.pred, R2.resid, R2.lik GLMM: glmerMod R2.pred, R2.resid, R2.lik PGLS: phylolm R2.pred, R2.resid, R2.lik PGLMM: binaryPGLMM R2.pred, R2.resid, ——- PGLMM: phyloglm ——-, ——–, R2.lik PGLMM: communityPGLMM (gaussian) R2.pred, ——–, R2.lik PGLMM: communityPGLMM (binomial) R2.pred, ——–, ——- Usage: calculating R2s for regression models

First, let’s simulate data that will be used to fit various models.

# data 
set.seed(123)
p1 <- 10; nsample <- 10; n <- p1 * nsample
d <- data.frame(x1 = rnorm(n = n), 
                x2 = rnorm(n = n), 
                u1 = rep(1:p1, each = nsample), 
                u2 = rep(1:p1, times = nsample))
d$u1 <- as.factor(d$u1); d$u2 <- as.factor(d$u2)

# LMM: y with random intercept
b1 <- 1; b2 <- -1; sd1 <- 1.5
d$y_re_intercept <- b1 * d$x1 + b2 * d$x2 + 
  rep(rnorm(n = p1, sd = sd1), each = nsample) +  # random intercept u1
  rep(rnorm(n = p1, sd = sd1), times = nsample) + # random intercept u2
  rnorm(n = n)

# LMM: y with random slope
b1 <- 0; sd1 <- 1; sd.x1 <- 2
d$y_re_slope <- b1 * d$x1 + 
  rep(rnorm(n = p1, sd = sd1), each = nsample) + # random intercept u1
  d$x1 * rep(rnorm(n = p1, sd = sd.x1), times = nsample) + # random slope u1
  rnorm(n = n)

# GLMM
b1 <- 1; sd1 <- 1.5
prob <- rr2::inv.logit(b1 * d$x1 + rep(rnorm(n = p1, sd = sd1), each = nsample)) 
# random intercept u1
d$y_binary <- rbinom(n = n, size = 1, prob = prob)

# PGLS
b1 <- 1.5; signal <- 0.7
phy <- ape::compute.brlen(ape::rtree(n = n), method = "Grafen", power = 1)
phy.x <- ape::compute.brlen(phy, method = "Grafen", power = .0001)
x_trait <- ape::rTraitCont(phy.x, model = "BM", sigma = 1)
e <- signal^0.5 * ape::rTraitCont(phy, model = "BM", sigma = 1) + (1-signal)^0.5 * rnorm(n=n)
d$x_trait <- x_trait[match(names(e), names(x_trait))]
d$y_pgls <- b1 * x_trait + e
rownames(d) <- phy$tip.label    

# Phylogenetic Logistic Regression
b1 <- 1.5; signal <- 2
e <- signal * ape::rTraitCont(phy, model = "BM", sigma = 1)
e <- e[match(phy$tip.label, names(e))]
d$y_phy_binary <- rbinom(n = n, size = 1, prob = rr2::inv.logit(b1 * d$x1 + e))

head(d)
##              x1          x2 u1 u2 y_re_intercept y_re_slope y_binary    x_trait
## t58 -0.56047565 -0.71040656  1  1       3.053041 -0.2790159        1  0.1565416
## t7  -0.23017749  0.25688371  1  2       3.794671  1.7435372        0  0.5308967
## t34  1.55870831 -0.24669188  1  3       8.062178 -0.3410566        1  1.3797080
## t31  0.07050839 -0.34754260  1  4       3.649759  0.5076822        0 -1.9627510
## t82  0.12928774 -0.95161857  1  5       2.526704  0.2830316        0  1.7114132
## t18  1.71506499 -0.04502772  1  6       7.631604 -8.5551981        0  0.4814764
##        y_pgls y_phy_binary
## t58  1.592177            0
## t7   1.888804            0
## t34  4.089835            0
## t31 -2.756382            0
## t82  3.744752            0
## t18  1.100467            1

Then, let’s fit some models and calculate their R2s.

library(rr2)
z.f.lm <- lm(y_re_intercept ~ x1 + x2, data = d)
z.x.lm <- lm(y_re_intercept ~ x1, data = d)
z.0.lm <- lm(y_re_intercept ~ 1, data = d)

R2(mod = z.f.lm, mod.r = z.x.lm)
##    R2_lik  R2_resid   R2_pred 
## 0.2473776 0.2473776 0.2473776
partialR2(mod = z.f.lm, mod.r = z.x.lm)
partialR2adj(mod = z.f.lm, mod.r = z.x.lm)
## $R2
## [1] 0.2473776
## 
## $R2.adj
## [1] 0.4982517
z.f.lmm <- lme4::lmer(y_re_intercept ~ x1 + x2 + (1 | u1) + (1 | u2), data = d, REML = F)
z.x.lmm <- lme4::lmer(y_re_intercept ~ x1 + (1 | u1) + (1 | u2), data = d, REML = F)
z.v.lmm <- lme4::lmer(y_re_intercept ~ 1 + (1 | u2), data = d, REML = F)
z.0.lmm <- lm(y_re_intercept ~ 1, data = d)

R2(mod = z.f.lmm, mod.r = z.x.lmm)
##    R2_lik  R2_resid   R2_pred 
## 0.5356524 0.6036312 0.6087728
R2(mod = z.f.lmm, mod.r = z.v.lmm)
##    R2_lik  R2_resid   R2_pred 
## 0.7441745 0.8373348 0.8559029
R2(mod = z.f.lmm, mod.r = z.0.lmm)
##    R2_lik  R2_resid   R2_pred 
## 0.7762978 0.8767789 0.8991618
R2(mod = z.f.lmm) # if omit mod.r, default will be the simplest model, such as z.0.lmm here.
##    R2_lik  R2_resid   R2_pred 
## 0.7762978 0.8767789 0.8991618
z.f.glmm <- lme4::glmer(y_binary ~ x1 + (1 | u1), data = d, family = "binomial")
z.x.glmm <- lme4::glmer(y_binary ~ 1 + (1 | u1), data = d, family = "binomial")
z.v.glmm <- glm(y_binary ~ x1, data = d, family = "binomial")

R2(mod = z.f.glmm, mod.r = z.x.glmm)
##    R2_lik  R2_resid   R2_pred 
## 0.1170588 0.1413693 0.1373521
R2(mod = z.f.glmm, mod.r = z.v.glmm)
##    R2_lik  R2_resid   R2_pred 
## 0.1990563 0.3404476 0.3545240
##    R2_lik  R2_resid   R2_pred 
## 0.2406380 0.3659939 0.3792381
# specify sigma2_d for R2.resid()
R2.resid(mod = z.f.glmm, mod.r = z.v.glmm, sigma2_d = "s2w")
R2.resid(mod = z.f.glmm, mod.r = z.v.glmm, sigma2_d = "NS") 
R2.resid(mod = z.f.glmm, mod.r = z.v.glmm, sigma2_d = "rNS")
z.f.pgls <- phylolm::phylolm(y_pgls ~ x_trait, phy = phy, data = d, model = "lambda")
z.v.lm <- lm(y_pgls ~ x_trait, data = d)

# phy is needed for phylogenetic models' R2.resid and R2.pred
R2(mod = z.f.pgls, mod.r = z.v.lm, phy = phy)
##    R2_lik  R2_resid   R2_pred 
## 0.3826794 0.4854626 0.4599149
R2(mod = z.f.pgls, phy = phy)
##    R2_lik  R2_resid   R2_pred 
## 0.8825674 0.9021198 0.8972599
# This also works for models fit with nlme::gls()
z.f.gls <- nlme::gls(y_pgls ~ x_trait, data = d, correlation = ape::corPagel(1, phy), method = "ML")
## Warning in Initialize.corPhyl(X[[i]], ...): No covariate specified, species
## will be taken as ordered in the data frame. To avoid this message, specify a
## covariate containing the species names with the 'form' argument.
z.x.gls <- nlme::gls(y_pgls ~ 1, data = d, correlation = ape::corPagel(1, phy), method = "ML")
## Warning in Initialize.corPhyl(X[[i]], ...): No covariate specified, species
## will be taken as ordered in the data frame. To avoid this message, specify a
## covariate containing the species names with the 'form' argument.
R2(mod = z.f.gls, mod.r = z.v.lm)
##    R2_lik  R2_resid   R2_pred 
## 0.3826794 0.4854591 0.4599150
##    R2_lik  R2_resid   R2_pred 
## 0.8825674 0.9021191 0.8972599
Phylogenetic Logistic Regression

Note: we modified ape::binaryPGLMM to return necessary components for rr2::R2().

z.f.plog <- rr2::binaryPGLMM(y_phy_binary ~ x1, data = d, phy = phy)
z.x.plog <- rr2::binaryPGLMM(y_phy_binary ~ 1, data = d, phy = phy)
z.v.plog <- glm(y_phy_binary ~ x1, data = d, family = "binomial")

# R2.lik can't be used with binaryPGLMM because it is not a ML method
R2(mod = z.f.plog, mod.r = z.x.plog)
## Models of class binaryPGLMM do not have R2.lik method.

##   R2_resid    R2_pred 
## 0.06547002 0.16402212
## Models of class binaryPGLMM do not have R2.lik method.

##  R2_resid   R2_pred 
## 0.4538734 0.4831391
z.f.plog2 <- phylolm::phyloglm(y_phy_binary ~ x1, data = d, start.alpha = 1, phy = phy)
z.x.plog2 <- phylolm::phyloglm(y_phy_binary ~ 1, data = d, phy = phy, 
                               start.alpha = min(20, z.f.plog2$alpha))
z.v.plog2 <- glm(y_phy_binary ~ x1, data = d, family = "binomial")

# R2.resid and R2.pred do not apply for phyloglm
R2(z.f.plog2, z.x.plog2) 
## Models of class phyloglm only have R2.lik method.

##    R2_lik 
## 0.2596424
# alternate
R2.lik(z.f.plog2, z.x.plog2)
Contributions of predictors

We can use rr2::R2() to calculate partial R2s and compare contributions of different predictors. Here is an example using phylolm::phyloglm(). The same comparisons can be also applied to other types of models.

z.f <- phylolm::phyloglm(y_phy_binary ~ x1 + x2, data = d, start.alpha = 1, phy = phy)
z.r1 <- phylolm::phyloglm(y_phy_binary ~ x1, data = d, start.alpha = 1, phy = phy)
z.r2 <- phylolm::phyloglm(y_phy_binary ~ x2, data = d, start.alpha = 1, phy = phy)
# total R2
R2(z.f)
## Models of class phyloglm only have R2.lik method.

##    R2_lik 
## 0.2914438
# contribution of x1
R2(z.f, z.r2)
## Models of class phyloglm only have R2.lik method.

##    R2_lik 
## 0.2390317
# contribution of x2
R2(z.f, z.r1)
## Models of class phyloglm only have R2.lik method.

##     R2_lik 
## 0.01310165

It is also possible to estimate the “contribution” of correlation structrues in the model. For the above example, we can replace the phylogeny with a star phylogeny and then compare the R2s of the two models.

# see the first chunk R code for the build of phy.x, a star phylogeny
z.r3 <- phylolm::phyloglm(y_phy_binary ~ x1 + x2, data = d, start.alpha = 1, phy = phy.x)
R2(z.f, z.r3)
## Models of class phyloglm only have R2.lik method.

##     R2_lik 
## 0.08364779

Please cite the following papers if you find this package useful:

Contributions are welcome. You can either provide comments and feedback by filing an issue on Github here or making pull requests. It may be easier if you first open an issue outlining what you will do in the pull request.

Questions about the package can also be posted as issues on Github.


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4