Please be aware that the `pyclustering` library is no longer supported as of 2021 due to personal reasons. There will be no further maintenance, issue addressing, or feature development for this repository.
For continued usage, I recommend seeking alternative solutions.
Thank you for your understanding.
pyclustering is a Python, C++ data mining library (clustering algorithm, oscillatory networks, neural networks). The library provides Python and C++ implementations (C++ pyclustering library) of each algorithm or model. C++ pyclustering library is a part of pyclustering and supported for Linux, Windows and MacOS operating systems.
Version: 0.11.dev
License: The 3-Clause BSD License
E-Mail: pyclustering@yandex.ru
Documentation: https://pyclustering.github.io/docs/0.10.1/html/
Homepage: https://pyclustering.github.io/
PyClustering Wiki: https://github.com/annoviko/pyclustering/wiki
Required packages: scipy, matplotlib, numpy, Pillow
Python version: >=3.6 (32-bit, 64-bit)
C++ version: >= 14 (32-bit, 64-bit)
Each algorithm is implemented using Python and C/C++ language, if your platform is not supported then Python implementation is used, otherwise C/C++. Implementation can be chosen by ccore flag (by default it is always 'True' and it means that C/C++ is used), for example:
# As by default - C/C++ part of the library is used xmeans_instance_1 = xmeans(data_points, start_centers, 20, ccore=True); # The same - C/C++ part of the library is used by default xmeans_instance_2 = xmeans(data_points, start_centers, 20); # Switch off core - Python is used xmeans_instance_3 = xmeans(data_points, start_centers, 20, ccore=False);
Installation using pip3 tool:
$ pip3 install pyclustering
Manual installation from official repository using Makefile:
# get sources of the pyclustering library, for example, from repository $ mkdir pyclustering $ cd pyclustering/ $ git clone https://github.com/annoviko/pyclustering.git . # compile CCORE library (core of the pyclustering library). $ cd ccore/ $ make ccore_64bit # build for 64-bit OS # $ make ccore_32bit # build for 32-bit OS # return to parent folder of the pyclustering library $ cd ../ # install pyclustering library $ python3 setup.py install # optionally - test the library $ python3 setup.py test
Manual installation using CMake:
# get sources of the pyclustering library, for example, from repository $ mkdir pyclustering $ cd pyclustering/ $ git clone https://github.com/annoviko/pyclustering.git . # generate build files. $ mkdir build $ cmake .. # build pyclustering-shared target depending on what was generated (Makefile or MSVC solution) # if Makefile has been generated then $ make pyclustering-shared # return to parent folder of the pyclustering library $ cd ../ # install pyclustering library $ python3 setup.py install # optionally - test the library $ python3 setup.py test
Manual installation using Microsoft Visual Studio solution:
# install pyclustering library $ python3 setup.py install # optionally - test the library $ python3 setup.py testProposals, Questions, Bugs
In case of any questions, proposals or bugs related to the pyclustering please contact to pyclustering@yandex.ru or create an issue here.
If you are using pyclustering library in a scientific paper, please, cite the library:
Novikov, A., 2019. PyClustering: Data Mining Library. Journal of Open Source Software, 4(36), p.1230. Available at: http://dx.doi.org/10.21105/joss.01230.
BibTeX entry:
@article{Novikov2019, doi = {10.21105/joss.01230}, url = {https://doi.org/10.21105/joss.01230}, year = 2019, month = {apr}, publisher = {The Open Journal}, volume = {4}, number = {36}, pages = {1230}, author = {Andrei Novikov}, title = {{PyClustering}: Data Mining Library}, journal = {Journal of Open Source Software} }Brief Overview of the Library Content
Clustering algorithms and methods (module pyclustering.cluster):
Algorithm Python C++ Agglomerative ✓ ✓ BANG ✓ BIRCH ✓ BSAS ✓ ✓ CLARANS ✓ CLIQUE ✓ ✓ CURE ✓ ✓ DBSCAN ✓ ✓ Elbow ✓ ✓ EMA ✓ Fuzzy C-Means ✓ ✓ GA (Genetic Algorithm) ✓ ✓ G-Means ✓ ✓ HSyncNet ✓ ✓ K-Means ✓ ✓ K-Means++ ✓ ✓ K-Medians ✓ ✓ K-Medoids ✓ ✓ MBSAS ✓ ✓ OPTICS ✓ ✓ ROCK ✓ ✓ Silhouette ✓ ✓ SOM-SC ✓ ✓ SyncNet ✓ ✓ Sync-SOM ✓ TTSAS ✓ ✓ X-Means ✓ ✓Oscillatory networks and neural networks (module pyclustering.nnet):
Model Python C++ CNN (Chaotic Neural Network) ✓ fSync (Oscillatory network based on Landau-Stuart equation and Kuramoto model) ✓ HHN (Oscillatory network based on Hodgkin-Huxley model) ✓ ✓ Hysteresis Oscillatory Network ✓ LEGION (Local Excitatory Global Inhibitory Oscillatory Network) ✓ ✓ PCNN (Pulse-Coupled Neural Network) ✓ ✓ SOM (Self-Organized Map) ✓ ✓ Sync (Oscillatory network based on Kuramoto model) ✓ ✓ SyncPR (Oscillatory network for pattern recognition) ✓ ✓ SyncSegm (Oscillatory network for image segmentation) ✓ ✓Graph Coloring Algorithms (module pyclustering.gcolor):
Algorithm Python C++ DSatur ✓ Hysteresis ✓ GColorSync ✓Containers (module pyclustering.container):
Algorithm Python C++ KD Tree ✓ ✓ CF Tree ✓The library contains examples for each algorithm and oscillatory network model:
Clustering examples: pyclustering/cluster/examples
Graph coloring examples: pyclustering/gcolor/examples
Oscillatory network examples: pyclustering/nnet/examples
Data clustering by CURE algorithm
from pyclustering.cluster import cluster_visualizer; from pyclustering.cluster.cure import cure; from pyclustering.utils import read_sample; from pyclustering.samples.definitions import FCPS_SAMPLES; # Input data in following format [ [0.1, 0.5], [0.3, 0.1], ... ]. input_data = read_sample(FCPS_SAMPLES.SAMPLE_LSUN); # Allocate three clusters. cure_instance = cure(input_data, 3); cure_instance.process(); clusters = cure_instance.get_clusters(); # Visualize allocated clusters. visualizer = cluster_visualizer(); visualizer.append_clusters(clusters, input_data); visualizer.show();
Data clustering by K-Means algorithm
from pyclustering.cluster.kmeans import kmeans, kmeans_visualizer from pyclustering.cluster.center_initializer import kmeans_plusplus_initializer from pyclustering.samples.definitions import FCPS_SAMPLES from pyclustering.utils import read_sample # Load list of points for cluster analysis. sample = read_sample(FCPS_SAMPLES.SAMPLE_TWO_DIAMONDS) # Prepare initial centers using K-Means++ method. initial_centers = kmeans_plusplus_initializer(sample, 2).initialize() # Create instance of K-Means algorithm with prepared centers. kmeans_instance = kmeans(sample, initial_centers) # Run cluster analysis and obtain results. kmeans_instance.process() clusters = kmeans_instance.get_clusters() final_centers = kmeans_instance.get_centers() # Visualize obtained results kmeans_visualizer.show_clusters(sample, clusters, final_centers)
Data clustering by OPTICS algorithm
from pyclustering.cluster import cluster_visualizer from pyclustering.cluster.optics import optics, ordering_analyser, ordering_visualizer from pyclustering.samples.definitions import FCPS_SAMPLES from pyclustering.utils import read_sample # Read sample for clustering from some file sample = read_sample(FCPS_SAMPLES.SAMPLE_LSUN) # Run cluster analysis where connectivity radius is bigger than real radius = 2.0 neighbors = 3 amount_of_clusters = 3 optics_instance = optics(sample, radius, neighbors, amount_of_clusters) # Performs cluster analysis optics_instance.process() # Obtain results of clustering clusters = optics_instance.get_clusters() noise = optics_instance.get_noise() ordering = optics_instance.get_ordering() # Visualize ordering diagram analyser = ordering_analyser(ordering) ordering_visualizer.show_ordering_diagram(analyser, amount_of_clusters) # Visualize clustering results visualizer = cluster_visualizer() visualizer.append_clusters(clusters, sample) visualizer.show()
Simulation of oscillatory network PCNN
from pyclustering.nnet.pcnn import pcnn_network, pcnn_visualizer # Create Pulse-Coupled neural network with 10 oscillators. net = pcnn_network(10) # Perform simulation during 100 steps using binary external stimulus. dynamic = net.simulate(50, [1, 1, 1, 0, 0, 0, 0, 1, 1, 1]) # Allocate synchronous ensembles from the output dynamic. ensembles = dynamic.allocate_sync_ensembles() # Show output dynamic. pcnn_visualizer.show_output_dynamic(dynamic, ensembles)
Simulation of chaotic neural network CNN
from pyclustering.cluster import cluster_visualizer from pyclustering.samples.definitions import SIMPLE_SAMPLES from pyclustering.utils import read_sample from pyclustering.nnet.cnn import cnn_network, cnn_visualizer # Load stimulus from file. stimulus = read_sample(SIMPLE_SAMPLES.SAMPLE_SIMPLE3) # Create chaotic neural network, amount of neurons should be equal to amount of stimulus. network_instance = cnn_network(len(stimulus)) # Perform simulation during 100 steps. steps = 100 output_dynamic = network_instance.simulate(steps, stimulus) # Display output dynamic of the network. cnn_visualizer.show_output_dynamic(output_dynamic) # Display dynamic matrix and observation matrix to show clustering phenomenon. cnn_visualizer.show_dynamic_matrix(output_dynamic) cnn_visualizer.show_observation_matrix(output_dynamic) # Visualize clustering results. clusters = output_dynamic.allocate_sync_ensembles(10) visualizer = cluster_visualizer() visualizer.append_clusters(clusters, stimulus) visualizer.show()
Cluster allocation on FCPS dataset collection by DBSCAN:
Cluster allocation by OPTICS using cluster-ordering diagram:
Partial synchronization (clustering) in Sync oscillatory network:
Cluster visualization by SOM (Self-Organized Feature Map)
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4