A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://github.com/ahmedkrmn/Asymptotic-Complexity-Testing below:

ahmedkrmn/Asymptotic-Complexity-Testing: Proposed project for R Project for Statistical Computing GSoC 2020 under the supervision of Dr. Toby Hocking.

Test 1 (PeakSegDP::cDPA versus PeakSegOptimal::PeakSegPDPA)
# Import used libraries
library(PeakSegOptimal)
library(PeakSegDP)
library(microbenchmark)
library(ggplot2)
# Initialize n_seq (different values of n to test with)
n_seq = c(10, 100, 1000, 10000)
# Declare a vector to store the runtime data in each loop iteration for each algorithm
cdpa_data <- integer(length(n_seq))
pdpa_data <- integer(length(n_seq))
# Loop through the different values of input N and compute the benchmark in each iteration
for (i in seq(1, length(n_seq))){
  # GeneratePoisson distribution 
  x <- rpois(n_seq[i], 10)
  # Benchmark both the PeakSegPDPA and cDPA functions with maxSegments = 3  
  m <- summary(microbenchmark( PeakSegPDPA(x, rep(1, length(x)), 3L),cDPA(x, rep(1, length(x)), 3L)))
  pdpa_data[i] <- m$mean[1]
  cdpa_data[i] <- m$mean[2]
}
# Create a dateframe from the computed data
df = data.frame(pdpa_data, cdpa_data, n_seq)

# Plot cDPA vs N(red)    and    PeakSegPDPA vs N(blue)
ggplot(df, aes(x=n_seq, y=cdpa_data)) + geom_line(color = 'red') + geom_line(y = pdpa_data, color='blue') + labs(x="N", y="Runtime") 


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4