A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://github.com/ViTAE-Transformer/ViTPose below:

ViTAE-Transformer/ViTPose: The official repo for [NeurIPS'22] "ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation" and [TPAMI'23] "ViTPose++: Vision Transformer for Generic Body Pose Estimation"

ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation

Results | Updates | Usage | Todo | Acknowledge

This branch contains the pytorch implementation of ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation and ViTPose+: Vision Transformer Foundation Model for Generic Body Pose Estimation. It obtains 81.1 AP on MS COCO Keypoint test-dev set.

Results from this repo on MS COCO val set (single-task training)

Using detection results from a detector that obtains 56 mAP on person. The configs here are for both training and test.

With classic decoder

With simple decoder

Results with multi-task training

Note * There may exist duplicate images in the crowdpose training set and the validation images in other datasets, as discussed in issue #24. Please be careful when using these models for evaluation. We provide the results without the crowpose dataset for reference.

Human datasets (MS COCO, AIC, MPII, CrowdPose)

Results on MS COCO val set

Using detection results from a detector that obtains 56 mAP on person. Note the configs here are only for evaluation.

Model Dataset Resolution AP AR config weight ViTPose-B COCO+AIC+MPII 256x192 77.1 82.2 config Onedrive ViTPose-L COCO+AIC+MPII 256x192 78.7 83.8 config Onedrive ViTPose-H COCO+AIC+MPII 256x192 79.5 84.5 config Onedrive ViTPose-G COCO+AIC+MPII 576x432 81.0 85.6 ViTPose-B* COCO+AIC+MPII+CrowdPose 256x192 77.5 82.6 config Onedrive ViTPose-L* COCO+AIC+MPII+CrowdPose 256x192 79.1 84.1 config Onedrive ViTPose-H* COCO+AIC+MPII+CrowdPose 256x192 79.8 84.8 config Onedrive ViTPose+-S COCO+AIC+MPII+AP10K+APT36K+WholeBody 256x192 75.8 82.6 config log | Onedrive ViTPose+-B COCO+AIC+MPII+AP10K+APT36K+WholeBody 256x192 77.0 82.6 config log | Onedrive ViTPose+-L COCO+AIC+MPII+AP10K+APT36K+WholeBody 256x192 78.6 84.1 config log | Onedrive ViTPose+-H COCO+AIC+MPII+AP10K+APT36K+WholeBody 256x192 79.4 84.8 config log | Onedrive

Results on OCHuman test set

Using groundtruth bounding boxes. Note the configs here are only for evaluation.

Model Dataset Resolution AP AR config weight ViTPose-B COCO+AIC+MPII 256x192 88.0 89.6 config Onedrive ViTPose-L COCO+AIC+MPII 256x192 90.9 92.2 config Onedrive ViTPose-H COCO+AIC+MPII 256x192 90.9 92.3 config Onedrive ViTPose-G COCO+AIC+MPII 576x432 93.3 94.3 ViTPose-B* COCO+AIC+MPII+CrowdPose 256x192 88.2 90.0 config Onedrive ViTPose-L* COCO+AIC+MPII+CrowdPose 256x192 91.5 92.8 config Onedrive ViTPose-H* COCO+AIC+MPII+CrowdPose 256x192 91.6 92.8 config Onedrive ViTPose+-S COCO+AIC+MPII+AP10K+APT36K+WholeBody 256x192 78.4 80.6 config log | Onedrive ViTPose+-B COCO+AIC+MPII+AP10K+APT36K+WholeBody 256x192 82.6 84.8 config log | Onedrive ViTPose+-L COCO+AIC+MPII+AP10K+APT36K+WholeBody 256x192 85.7 87.5 config log | Onedrive ViTPose+-H COCO+AIC+MPII+AP10K+APT36K+WholeBody 256x192 85.7 87.4 config log | Onedrive

Results on MPII val set

Using groundtruth bounding boxes. Note the configs here are only for evaluation. The metric is PCKh.

Model Dataset Resolution Mean config weight ViTPose-B COCO+AIC+MPII 256x192 93.3 config Onedrive ViTPose-L COCO+AIC+MPII 256x192 94.0 config Onedrive ViTPose-H COCO+AIC+MPII 256x192 94.1 config Onedrive ViTPose-G COCO+AIC+MPII 576x432 94.3 ViTPose-B* COCO+AIC+MPII+CrowdPose 256x192 93.4 config Onedrive ViTPose-L* COCO+AIC+MPII+CrowdPose 256x192 93.9 config Onedrive ViTPose-H* COCO+AIC+MPII+CrowdPose 256x192 94.1 config Onedrive ViTPose+-S COCO+AIC+MPII+AP10K+APT36K+WholeBody 256x192 92.7 config log | Onedrive ViTPose+-B COCO+AIC+MPII+AP10K+APT36K+WholeBody 256x192 92.8 config log | Onedrive ViTPose+-L COCO+AIC+MPII+AP10K+APT36K+WholeBody 256x192 94.0 config log | Onedrive ViTPose+-H COCO+AIC+MPII+AP10K+APT36K+WholeBody 256x192 94.2 config log | Onedrive

Results on AI Challenger test set

Using groundtruth bounding boxes. Note the configs here are only for evaluation.

Model Dataset Resolution AP AR config weight ViTPose-B COCO+AIC+MPII 256x192 32.0 36.3 config Onedrive ViTPose-L COCO+AIC+MPII 256x192 34.5 39.0 config Onedrive ViTPose-H COCO+AIC+MPII 256x192 35.4 39.9 config Onedrive ViTPose-G COCO+AIC+MPII 576x432 43.2 47.1 ViTPose-B* COCO+AIC+MPII+CrowdPose 256x192 31.9 36.3 config Onedrive ViTPose-L* COCO+AIC+MPII+CrowdPose 256x192 34.6 39.0 config Onedrive ViTPose-H* COCO+AIC+MPII+CrowdPose 256x192 35.3 39.8 config Onedrive ViTPose+-S COCO+AIC+MPII+AP10K+APT36K+WholeBody 256x192 29.7 34.3 config log | Onedrive ViTPose+-B COCO+AIC+MPII+AP10K+APT36K+WholeBody 256x192 31.8 36.3 config log | Onedrive ViTPose+-L COCO+AIC+MPII+AP10K+APT36K+WholeBody 256x192 34.3 38.9 config log | Onedrive ViTPose+-H COCO+AIC+MPII+AP10K+APT36K+WholeBody 256x192 34.8 39.1 config log | Onedrive

Results on CrowdPose test set

Using YOLOv3 human detector. Note the configs here are only for evaluation.

Model Dataset Resolution AP AP(H) config weight ViTPose-B* COCO+AIC+MPII+CrowdPose 256x192 74.7 63.3 config Onedrive ViTPose-L* COCO+AIC+MPII+CrowdPose 256x192 76.6 65.9 config Onedrive ViTPose-H* COCO+AIC+MPII+CrowdPose 256x192 76.3 65.6 config Onedrive Animal datasets (AP10K, APT36K)

Results on AP-10K test set

Model Dataset Resolution AP config weight ViTPose+-S COCO+AIC+MPII+AP10K+APT36K+WholeBody 256x192 71.4 config log | Onedrive ViTPose+-B COCO+AIC+MPII+AP10K+APT36K+WholeBody 256x192 74.5 config log | Onedrive ViTPose+-L COCO+AIC+MPII+AP10K+APT36K+WholeBody 256x192 80.4 config log | Onedrive ViTPose+-H COCO+AIC+MPII+AP10K+APT36K+WholeBody 256x192 82.4 config log | Onedrive

Results on APT-36K val set

Model Dataset Resolution AP config weight ViTPose+-S COCO+AIC+MPII+AP10K+APT36K+WholeBody 256x192 74.2 config log | Onedrive ViTPose+-B COCO+AIC+MPII+AP10K+APT36K+WholeBody 256x192 75.9 config log | Onedrive ViTPose+-L COCO+AIC+MPII+AP10K+APT36K+WholeBody 256x192 80.8 config log | Onedrive ViTPose+-H COCO+AIC+MPII+AP10K+APT36K+WholeBody 256x192 82.3 config log | Onedrive Model Dataset Resolution AP config weight ViTPose+-S COCO+AIC+MPII+AP10K+APT36K+WholeBody 256x192 54.4 config log | Onedrive ViTPose+-B COCO+AIC+MPII+AP10K+APT36K+WholeBody 256x192 57.4 config log | Onedrive ViTPose+-L COCO+AIC+MPII+AP10K+APT36K+WholeBody 256x192 60.6 config log | Onedrive ViTPose+-H COCO+AIC+MPII+AP10K+APT36K+WholeBody 256x192 61.2 config log | Onedrive Transfer results on the hand dataset (InterHand2.6M) Model Dataset Resolution AUC config weight ViTPose+-S COCO+AIC+MPII+WholeBody 256x192 86.5 config Coming Soon ViTPose+-B COCO+AIC+MPII+WholeBody 256x192 87.0 config Coming Soon ViTPose+-L COCO+AIC+MPII+WholeBody 256x192 87.5 config Coming Soon ViTPose+-H COCO+AIC+MPII+WholeBody 256x192 87.6 config Coming Soon

[2023-01-10] Update ViTPose+! It uses MoE strategies to jointly deal with human, animal, and wholebody pose estimation tasks.

[2022-05-24] Upload the single-task training code, single-task pre-trained models, and multi-task pretrained models.

[2022-05-06] Upload the logs for the base, large, and huge models!

[2022-04-27] Our ViTPose with ViTAE-G obtains 81.1 AP on COCO test-dev set!

Applications of ViTAE Transformer include: image classification | object detection | semantic segmentation | animal pose segmentation | remote sensing | matting | VSA | ViTDet

We use PyTorch 1.9.0 or NGC docker 21.06, and mmcv 1.3.9 for the experiments.

git clone https://github.com/open-mmlab/mmcv.git
cd mmcv
git checkout v1.3.9
MMCV_WITH_OPS=1 pip install -e .
cd ..
git clone https://github.com/ViTAE-Transformer/ViTPose.git
cd ViTPose
pip install -v -e .

After install the two repos, install timm and einops, i.e.,

pip install timm==0.4.9 einops

After downloading the pretrained models, please conduct the experiments by running

# for single machine
bash tools/dist_train.sh <Config PATH> <NUM GPUs> --cfg-options model.pretrained=<Pretrained PATH> --seed 0

# for multiple machines
python -m torch.distributed.launch --nnodes <Num Machines> --node_rank <Rank of Machine> --nproc_per_node <GPUs Per Machine> --master_addr <Master Addr> --master_port <Master Port> tools/train.py <Config PATH> --cfg-options model.pretrained=<Pretrained PATH> --launcher pytorch --seed 0

To test the pretrained models performance, please run

bash tools/dist_test.sh <Config PATH> <Checkpoint PATH> <NUM GPUs>

For ViTPose+ pre-trained models, please first re-organize the pre-trained weights using

python tools/model_split.py --source <Pretrained PATH>

This repo current contains modifications including:

We acknowledge the excellent implementation from mmpose and MAE.

For ViTPose

@inproceedings{
  xu2022vitpose,
  title={Vi{TP}ose: Simple Vision Transformer Baselines for Human Pose Estimation},
  author={Yufei Xu and Jing Zhang and Qiming Zhang and Dacheng Tao},
  booktitle={Advances in Neural Information Processing Systems},
  year={2022},
}

For ViTPose+

@article{xu2022vitpose+,
  title={ViTPose+: Vision Transformer Foundation Model for Generic Body Pose Estimation},
  author={Xu, Yufei and Zhang, Jing and Zhang, Qiming and Tao, Dacheng},
  journal={arXiv preprint arXiv:2212.04246},
  year={2022}
}

For ViTAE and ViTAEv2, please refer to:

@article{xu2021vitae,
  title={Vitae: Vision transformer advanced by exploring intrinsic inductive bias},
  author={Xu, Yufei and Zhang, Qiming and Zhang, Jing and Tao, Dacheng},
  journal={Advances in Neural Information Processing Systems},
  volume={34},
  year={2021}
}

@article{zhang2022vitaev2,
  title={ViTAEv2: Vision Transformer Advanced by Exploring Inductive Bias for Image Recognition and Beyond},
  author={Zhang, Qiming and Xu, Yufei and Zhang, Jing and Tao, Dacheng},
  journal={arXiv preprint arXiv:2202.10108},
  year={2022}
}

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4