A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://github.com/SwinTransformer/Swin-Transformer-Semantic-Segmentation below:

SwinTransformer/Swin-Transformer-Semantic-Segmentation: This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" on Semantic Segmentation.

Swin Transformer for Semantic Segmentaion

This repo contains the supported code and configuration files to reproduce semantic segmentaion results of Swin Transformer. It is based on mmsegmentaion.

05/11/2021 Models for MoBY are released

04/12/2021 Initial commits

Notes:

Results of MoBY with Swin Transformer Backbone Method Crop Size Lr Schd mIoU mIoU (ms+flip) #params FLOPs config log model Swin-T UPerNet 512x512 160K 44.06 45.58 60M 945G config github/baidu github/baidu

Notes:

Please refer to get_started.md for installation and dataset preparation.

# single-gpu testing
python tools/test.py <CONFIG_FILE> <SEG_CHECKPOINT_FILE> --eval mIoU

# multi-gpu testing
tools/dist_test.sh <CONFIG_FILE> <SEG_CHECKPOINT_FILE> <GPU_NUM> --eval mIoU

# multi-gpu, multi-scale testing
tools/dist_test.sh <CONFIG_FILE> <SEG_CHECKPOINT_FILE> <GPU_NUM> --aug-test --eval mIoU

To train with pre-trained models, run:

# single-gpu training
python tools/train.py <CONFIG_FILE> --options model.pretrained=<PRETRAIN_MODEL> [model.backbone.use_checkpoint=True] [other optional arguments]

# multi-gpu training
tools/dist_train.sh <CONFIG_FILE> <GPU_NUM> --options model.pretrained=<PRETRAIN_MODEL> [model.backbone.use_checkpoint=True] [other optional arguments] 

For example, to train an UPerNet model with a Swin-T backbone and 8 gpus, run:

tools/dist_train.sh configs/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k.py 8 --options model.pretrained=<PRETRAIN_MODEL> 

Notes:

@article{liu2021Swin,
  title={Swin Transformer: Hierarchical Vision Transformer using Shifted Windows},
  author={Liu, Ze and Lin, Yutong and Cao, Yue and Hu, Han and Wei, Yixuan and Zhang, Zheng and Lin, Stephen and Guo, Baining},
  journal={arXiv preprint arXiv:2103.14030},
  year={2021}
}

Image Classification: See Swin Transformer for Image Classification.

Object Detection: See Swin Transformer for Object Detection.

Self-Supervised Learning: See MoBY with Swin Transformer.

Video Recognition, See Video Swin Transformer.


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4