Tensorflow2.X-GPU-CUDA9.0
This Tensorflow2.X-GPU-CUDA9.0 is bazeled from the sorce code of Google.
If you have configured cuda9 and cudnn in your .bashrc, you can skip to Third step.
Create cuda9.0 environment by condaconda create -n cuda9.0 conda activate cuda9.0 conda install cudatoolkit=9.0 cudnn=7.6.0 cuptiAdd dependency in .bashrc
Use conda env list find the path of cuda9.0
(tf2) wxy@sait:~$ conda info -e # conda environments: # cuda9.0 /disk1/lx/conda/envs/cuda9.0 mk /disk1/lx/conda/envs/mk
change the CONDA_ENV to your path of cuda9.0
add the following three lines of code in .bashrc
export CONDA_ENV="/disk1/lx/conda/envs/cuda9.0" export CUDA_HOME="$CUDA_HOME:$CONDA_ENV/lib" export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:$CONDA_ENV/lib"
Then source .bashrc
in you terminal.
Google-drive: tensorflow2.1-gpu-cudn9.0-py3.7
Google-drive: tensorflow2.0-gpu-cudn9.0-py3.7
Google-drive: tensorflow2.0-gpu-cudn9.0-py3.6
Google-drive: tensorflow2.0-gpu-cudn9.0-py3.5
Create a new env in conda(you can change test to your like)conda create -n test python=3.7 conda activate test pip install tensorflow-2.0.0-cp37-cp37m-linux_x86_64.whl
python import tensorflow as tf tf.test.is_gpu_available()
If it shows True, congratulations.
W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcusolver.so.9.0';.....undefined symbol: GOMP_critical_end;
If you have this error, please add follow code in your code.
import tensorflow as tf import ctypes ctypes.CDLL("libgomp.so.1", mode=ctypes.RTLD_GLOBAL) tf.test.is_gpu_available()
If it works , please give me a star.
Thank you!
How to install tensorflow2.X-GPU in your cuda version?you need to bazel from the source code of tensorflow in your machine.
Reference
How to install tensorflow2.0 in cuda9?
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4