@@ -39,12 +39,10 @@ orca(p, "man/figures/total.svg")
39
39
40
40
<!-- badges: start -->
41
41
42
-
[](https://cran.r-project.org/package=sfo) [](https://lifecycle.r-lib.org/articles/stages.html#stable) [](https://opensource.org/licenses/MIT) [](https://github.com/RamiKrispin/sfo/commit/main)
42
+
[](https://cran.r-project.org/package=sfo) [](https://lifecycle.r-lib.org/articles/stages.html#stable) [](https://opensource.org/license/mit/) [](https://github.com/RamiKrispin/sfo/commit/main)
43
43
44
44
<!-- badges: end -->
45
-
46
-
The **sfo** package provides summary statistics of the monthly passengers and landing in San Francisco International Airport (SFO) between 2005 and 2020.
47
-
45
+
The **sfo** package summarizes the monthly air passengers and landings at San Francisco International Airport (SFO) between 2005 and 2022.
48
46
Data source: San Francisco data portal - [DataSF API](https://datasf.org/opendata/)
49
47
50
48
<img src="man/figures/total.svg" width="90%"/>
@@ -69,13 +67,13 @@ devtools::install_github("RamiKrispin/sfo", ref = "main")
69
67
The **sfo** package provides the following two datasets:
70
68
71
69
* `sfo_passengers` - air traffic passengers statistics
72
-
* `sfo_stats` - air traffic landing statistics
70
+
* `sfo_stats` - air traffic landings statistics
73
71
74
-
More information about the datasets available on the following [vignette](https://ramikrispin.github.io/sfo/articles/v1_intro.html).
72
+
More information about the datasets is available in the following [vignette](https://ramikrispin.github.io/sfo/articles/v1_intro.html).
75
73
76
74
### Examples
77
75
78
-
The `sfo_passengers` dataset provides a monthly summary of the number of passengers in SFO airport by different categories (such as terminal, geo, type, etc.):
76
+
The `sfo_passengers` dataset provides monthly summary of the number of passengers in SFO airport by different categories (such as terminal, geo, type, etc.):
79
77
80
78
```{r }
81
79
library(sfo)
@@ -85,7 +83,7 @@ data("sfo_passengers")
85
83
head(sfo_passengers)
86
84
```
87
85
88
-
The `sfo_stats` dataset provides a monthly statistics on the air traffic landing at SFO airport:
86
+
The `sfo_stats` dataset provides monthly statistics on the air traffic landing at SFO airport:
89
87
90
88
```{r }
91
89
data("sfo_stats")
@@ -107,7 +105,7 @@ sfo_passengers %>%
107
105
```
108
106
109
107
110
-
The `sankey_ly` function enables us to plot the distribution of a numeric variable by multiple categorical variables. The following example shows the distribution of the total United Airlines passengers during 2019 by terminal, travel type (domestic and international), geo, and travel direction (deplaned, enplaned, and transit):
108
+
The `sankey_ly` function enables us to plot the distribution of a numeric variable by multiple categorical variables. The following example shows the distribution of the total United Airlines passengers during 2019 by a terminal, travel type (domestic and international), geo, and travel direction (deplaned, enplaned, and transit):
111
109
112
110
``` r
113
111
sfo_passengers %>%
@@ -140,11 +138,11 @@ orca(p, "man/figures/sankey.svg")
140
138
141
139
#### Total number of landing
142
140
143
-
The total number of landing in most recent month by `activity_type_code` and `aircraft_manufacturer`:
141
+
The total number of landings during the most recent month by `activity_type_code` and `aircraft_manufacturer`:
144
142
145
143
``` r
146
144
sfo_stats %>%
147
-
filter(activity_period == max(activity_period),
145
+
filter(activity_period == 202212,
148
146
aircraft_manufacturer != "") %>%
149
147
group_by(aircraft_manufacturer) %>%
150
148
summarise(total_landing = sum(landing_count),
@@ -153,13 +151,13 @@ sfo_stats %>%
153
151
plot_ly(labels = ~ aircraft_manufacturer,
154
152
values = ~ total_landing) %>%
155
153
add_pie(hole = 0.6) %>%
156
-
layout(title = "Landing Distribution by Aircraft Manufacturer during Sep 2020")
154
+
layout(title = "Landing Distribution by Aircraft Manufacturer during Dec 2022")
157
155
```
158
156
159
157
160
158
```{r, include=FALSE}
161
159
p <- sfo_stats %>%
162
-
filter(activity_period == max(activity_period),
160
+
filter(activity_period == 202212,
163
161
aircraft_manufacturer != "") %>%
164
162
group_by(aircraft_manufacturer) %>%
165
163
summarise(total_landing = sum(landing_count),
@@ -168,18 +166,18 @@ p <- sfo_stats %>%
168
166
plot_ly(labels = ~ aircraft_manufacturer,
169
167
values = ~ total_landing) %>%
170
168
add_pie(hole = 0.6) %>%
171
-
layout(title = "Landing Distribution by Aircraft Manufacturer During Sep 2020")
169
+
layout(title = "Landing Distribution by Aircraft Manufacturer During Dec 2022")
172
170
173
171
orca(p, "man/figures/manufacturer.svg")
174
172
```
175
173
176
174
<img src="man/figures/manufacturer.svg" width="100%"/>
177
175
178
-
The following Sankey plot demonstrate the distribution of number of landing in SFO by region and aircraft type, manufacturer, and body type during Sep 2020:
176
+
The following Sankey plot demonstrates the distribution of the number of landing in SFO by region and aircraft type, manufacturer, and body type during Dec 2022:
179
177
180
178
``` r
181
179
sfo_stats %>%
182
-
filter(activity_period == max(activity_period)) %>%
180
+
filter(activity_period == 202212) %>%
183
181
group_by(geo_summary, geo_region, landing_aircraft_type, aircraft_manufacturer, aircraft_body_type) %>%
184
182
summarise(total_landing = sum(landing_count),
185
183
groups = "drop") %>%
@@ -188,14 +186,14 @@ sfo_stats %>%
188
186
"aircraft_manufacturer",
189
187
"aircraft_body_type"),
190
188
num_col = "total_landing",
191
-
title = "Landing Summary by Geo Region and Aircraft Type During Sep 2020")
189
+
title = "Landing Summary by Geo Region and Aircraft Type During Dec 2022")
192
190
193
191
```
194
192
195
193
196
194
```{r, include=FALSE}
197
195
p <- sfo_stats %>%
198
-
filter(activity_period == max(activity_period)) %>%
196
+
filter(activity_period == 202212) %>%
199
197
group_by(geo_region, landing_aircraft_type, aircraft_manufacturer, aircraft_body_type) %>%
200
198
summarise(total_landing = sum(landing_count),
201
199
groups = "drop") %>%
@@ -204,7 +202,7 @@ p <- sfo_stats %>%
204
202
"aircraft_manufacturer",
205
203
"aircraft_body_type"),
206
204
num_col = "total_landing",
207
-
title = "Landing Summary by Geo Region and Aircraft Type During Sep 2020")
205
+
title = "Landing Summary by Geo Region and Aircraft Type During Dec 2022")
208
206
209
207
orca(p, "man/figures/landing_sankey.svg")
210
208
```
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4