English | 简体中文 | 日本語 | English Blog | 中文博客
D-FINE: Redefine Regression Task of DETRs as Fine‑grained Distribution Refinement📄 This is the official implementation of the paper:
D-FINE: Redefine Regression Task of DETRs as Fine-grained Distribution Refinement
Yansong Peng, Hebei Li, Peixi Wu, Yueyi Zhang, Xiaoyan Sun, and Feng Wu
University of Science and Technology of China
If you like D-FINE, please give us a ⭐! Your support motivates us to keep improving!
D-FINE is a powerful real-time object detector that redefines the bounding box regression task in DETRs as Fine-grained Distribution Refinement (FDR) and introduces Global Optimal Localization Self-Distillation (GO-LSD), achieving outstanding performance without introducing additional inference and training costs.
VideoWe conduct object detection using D-FINE and YOLO11 on a complex street scene video from YouTube. Despite challenging conditions such as backlighting, motion blur, and dense crowds, D-FINE-X successfully detects nearly all targets, including subtle small objects like backpacks, bicycles, and traffic lights. Its confidence scores and the localization precision for blurred edges are significantly higher than those of YOLO11.
video_vis.mp4We highly recommend that you use the Objects365 pre-trained model for fine-tuning:
⚠️ Important: Please note that this is generally beneficial for complex scene understanding. If your categories are very simple, it might lead to overfitting and suboptimal performance.
🔥 Pretrained Models on Objects365 (Best generalization) Model Dataset APval AP5000 #Params Latency GFLOPs config checkpoint logs D‑FINE‑S Objects365 31.0 30.5 10M 3.49ms 25 yml 30.5 url D‑FINE‑M Objects365 38.6 37.4 19M 5.62ms 57 yml 37.4 url D‑FINE‑L Objects365 - 40.6 31M 8.07ms 91 yml 40.6 url D‑FINE‑L (E25) Objects365 44.7 42.6 31M 8.07ms 91 yml 42.6 url D‑FINE‑X Objects365 49.5 46.5 62M 12.89ms 202 yml 46.5 urlNotes:
conda create -n dfine python=3.11.9 conda activate dfine pip install -r requirements.txtCOCO2017 Dataset
Download COCO2017 from OpenDataLab or COCO.
Modify paths in coco_detection.yml
train_dataloader: img_folder: /data/COCO2017/train2017/ ann_file: /data/COCO2017/annotations/instances_train2017.json val_dataloader: img_folder: /data/COCO2017/val2017/ ann_file: /data/COCO2017/annotations/instances_val2017.json
Download Objects365 from OpenDataLab.
Set the Base Directory:
export BASE_DIR=/data/Objects365/data
${BASE_DIR}/train ├── images │ ├── v1 │ │ ├── patch0 │ │ │ ├── 000000000.jpg │ │ │ ├── 000000001.jpg │ │ │ └── ... (more images) │ ├── v2 │ │ ├── patchx │ │ │ ├── 000000000.jpg │ │ │ ├── 000000001.jpg │ │ │ └── ... (more images) ├── zhiyuan_objv2_train.json
${BASE_DIR}/val ├── images │ ├── v1 │ │ ├── patch0 │ │ │ ├── 000000000.jpg │ │ │ └── ... (more images) │ ├── v2 │ │ ├── patchx │ │ │ ├── 000000000.jpg │ │ │ └── ... (more images) ├── zhiyuan_objv2_val.json
mkdir -p ${BASE_DIR}/train/images_from_val
cp -r ${BASE_DIR}/val/images/v1 ${BASE_DIR}/train/images_from_val/ cp -r ${BASE_DIR}/val/images/v2 ${BASE_DIR}/train/images_from_val/
python tools/remap_obj365.py --base_dir ${BASE_DIR}
python tools/resize_obj365.py --base_dir ${BASE_DIR}
Modify paths in obj365_detection.yml
train_dataloader: img_folder: /data/Objects365/data/train ann_file: /data/Objects365/data/train/new_zhiyuan_objv2_train_resized.json val_dataloader: img_folder: /data/Objects365/data/val/ ann_file: /data/Objects365/data/val/new_zhiyuan_objv2_val_resized.json
Download COCO format dataset here: url
Custom DatasetTo train on your custom dataset, you need to organize it in the COCO format. Follow the steps below to prepare your dataset:
Set remap_mscoco_category
to False
:
This prevents the automatic remapping of category IDs to match the MSCOCO categories.
remap_mscoco_category: False
Organize Images:
Structure your dataset directories as follows:
dataset/ ├── images/ │ ├── train/ │ │ ├── image1.jpg │ │ ├── image2.jpg │ │ └── ... │ ├── val/ │ │ ├── image1.jpg │ │ ├── image2.jpg │ │ └── ... └── annotations/ ├── instances_train.json ├── instances_val.json └── ...
images/train/
: Contains all training images.images/val/
: Contains all validation images.annotations/
: Contains COCO-formatted annotation files.Convert Annotations to COCO Format:
If your annotations are not already in COCO format, you'll need to convert them. You can use the following Python script as a reference or utilize existing tools:
import json def convert_to_coco(input_annotations, output_annotations): # Implement conversion logic here pass if __name__ == "__main__": convert_to_coco('path/to/your_annotations.json', 'dataset/annotations/instances_train.json')
Update Configuration Files:
Modify your custom_detection.yml.
task: detection evaluator: type: CocoEvaluator iou_types: ['bbox', ] num_classes: 777 # your dataset classes remap_mscoco_category: False train_dataloader: type: DataLoader dataset: type: CocoDetection img_folder: /data/yourdataset/train ann_file: /data/yourdataset/train/train.json return_masks: False transforms: type: Compose ops: ~ shuffle: True num_workers: 4 drop_last: True collate_fn: type: BatchImageCollateFunction val_dataloader: type: DataLoader dataset: type: CocoDetection img_folder: /data/yourdataset/val ann_file: /data/yourdataset/val/ann.json return_masks: False transforms: type: Compose ops: ~ shuffle: False num_workers: 4 drop_last: False collate_fn: type: BatchImageCollateFunction
export model=l # n s m l x
CUDA_VISIBLE_DEVICES=0,1,2,3 torchrun --master_port=7777 --nproc_per_node=4 train.py -c configs/dfine/dfine_hgnetv2_${model}_coco.yml --use-amp --seed=0
CUDA_VISIBLE_DEVICES=0,1,2,3 torchrun --master_port=7777 --nproc_per_node=4 train.py -c configs/dfine/dfine_hgnetv2_${model}_coco.yml --test-only -r model.pth
CUDA_VISIBLE_DEVICES=0,1,2,3 torchrun --master_port=7777 --nproc_per_node=4 train.py -c configs/dfine/dfine_hgnetv2_${model}_coco.yml --use-amp --seed=0 -t model.pthObjects365 to COCO2017
export model=l # n s m l x
CUDA_VISIBLE_DEVICES=0,1,2,3 torchrun --master_port=7777 --nproc_per_node=4 train.py -c configs/dfine/objects365/dfine_hgnetv2_${model}_obj365.yml --use-amp --seed=0
CUDA_VISIBLE_DEVICES=0,1,2,3 torchrun --master_port=7777 --nproc_per_node=4 train.py -c configs/dfine/objects365/dfine_hgnetv2_${model}_obj2coco.yml --use-amp --seed=0 -t model.pth
CUDA_VISIBLE_DEVICES=0,1,2,3 torchrun --master_port=7777 --nproc_per_node=4 train.py -c configs/dfine/dfine_hgnetv2_${model}_coco.yml --test-only -r model.pthCustom Dataset
export model=l # n s m l x
CUDA_VISIBLE_DEVICES=0,1,2,3 torchrun --master_port=7777 --nproc_per_node=4 train.py -c configs/dfine/custom/dfine_hgnetv2_${model}_custom.yml --use-amp --seed=0
CUDA_VISIBLE_DEVICES=0,1,2,3 torchrun --master_port=7777 --nproc_per_node=4 train.py -c configs/dfine/custom/dfine_hgnetv2_${model}_custom.yml --test-only -r model.pth
CUDA_VISIBLE_DEVICES=0,1,2,3 torchrun --master_port=7777 --nproc_per_node=4 train.py -c configs/dfine/custom/objects365/dfine_hgnetv2_${model}_obj2custom.yml --use-amp --seed=0 -t model.pth
When using the Objects365 pre-trained weights to train on your custom dataset, the example assumes that your dataset only contains the classes 'Person'
and 'Car'
. For faster convergence, you can modify self.obj365_ids
in src/solver/_solver.py
as follows:
self.obj365_ids = [0, 5] # Person, Cars
You can replace these with any corresponding classes from your dataset. The list of Objects365 classes with their corresponding IDs:
New training command:
CUDA_VISIBLE_DEVICES=0,1,2,3 torchrun --master_port=7777 --nproc_per_node=4 train.py -c configs/dfine/custom/dfine_hgnetv2_${model}_custom.yml --use-amp --seed=0 -t model.pth
However, if you don't wish to modify the class mappings, the pre-trained Objects365 weights will still work without any changes. Modifying the class mappings is optional and can potentially accelerate convergence for specific tasks.
Customizing Batch SizeFor example, if you want to double the total batch size when training D-FINE-L on COCO2017, here are the steps you should follow:
Modify your dataloader.yml to increase the total_batch_size
:
train_dataloader: total_batch_size: 64 # Previously it was 32, now doubled
Modify your dfine_hgnetv2_l_coco.yml. Here’s how the key parameters should be adjusted:
optimizer: type: AdamW params: - params: '^(?=.*backbone)(?!.*norm|bn).*$' lr: 0.000025 # doubled, linear scaling law - params: '^(?=.*(?:encoder|decoder))(?=.*(?:norm|bn)).*$' weight_decay: 0. lr: 0.0005 # doubled, linear scaling law betas: [0.9, 0.999] weight_decay: 0.0001 # need a grid search ema: # added EMA settings decay: 0.9998 # adjusted by 1 - (1 - decay) * 2 warmups: 500 # halved lr_warmup_scheduler: warmup_duration: 250 # halved
If you'd like to train D-FINE-L on COCO2017 with an input size of 320x320, follow these steps:
Modify your dataloader.yml:
train_dataloader: dataset: transforms: ops: - {type: Resize, size: [320, 320], } collate_fn: base_size: 320 dataset: transforms: ops: - {type: Resize, size: [320, 320], }
Modify your dfine_hgnetv2.yml:
eval_spatial_size: [320, 320]
pip install onnx onnxsim export model=l # n s m l x
python tools/deployment/export_onnx.py --check -c configs/dfine/dfine_hgnetv2_${model}_coco.yml -r model.pth
trtexec --onnx="model.onnx" --saveEngine="model.engine" --fp16Inference (Visualization)
pip install -r tools/inference/requirements.txt export model=l # n s m l x
Inference on images and videos is now supported.
python tools/inference/onnx_inf.py --onnx model.onnx --input image.jpg # video.mp4 python tools/inference/trt_inf.py --trt model.engine --input image.jpg python tools/inference/torch_inf.py -c configs/dfine/dfine_hgnetv2_${model}_coco.yml -r model.pth --input image.jpg --device cuda:0Benchmark
pip install -r tools/benchmark/requirements.txt export model=l # n s m l x
python tools/benchmark/get_info.py -c configs/dfine/dfine_hgnetv2_${model}_coco.yml
python tools/benchmark/trt_benchmark.py --COCO_dir path/to/COCO2017 --engine_dir model.engineFiftyone Visualization
pip install fiftyone export model=l # n s m l x
python tools/visualization/fiftyone_vis.py -c configs/dfine/dfine_hgnetv2_${model}_coco.yml -r model.pthOthers
bash reference/safe_training.sh
python reference/convert_weight.py model.pthFigures and Visualizations FDR and GO-LSD
Visualizations of FDR across detection scenarios with initial and refined bounding boxes, along with unweighted and weighted distributions.
Hard CasesThe following visualization demonstrates D-FINE's predictions in various complex detection scenarios. These include cases with occlusion, low-light conditions, motion blur, depth of field effects, and densely populated scenes. Despite these challenges, D-FINE consistently produces accurate localization results.
If you use D-FINE
or its methods in your work, please cite the following BibTeX entries:
@misc{peng2024dfine, title={D-FINE: Redefine Regression Task in DETRs as Fine-grained Distribution Refinement}, author={Yansong Peng and Hebei Li and Peixi Wu and Yueyi Zhang and Xiaoyan Sun and Feng Wu}, year={2024}, eprint={2410.13842}, archivePrefix={arXiv}, primaryClass={cs.CV} }
Our work is built upon RT-DETR. Thanks to the inspirations from RT-DETR, GFocal, LD, and YOLOv9.
✨ Feel free to contribute and reach out if you have any questions! ✨
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4