A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://github.com/PaddlePaddle/PaddleOCR below:

PaddlePaddle/PaddleOCR: Awesome multilingual OCR and Document Parsing toolkits based on PaddlePaddle (practical ultra lightweight OCR system, support 80+ languages recognition, provide data annotation and synthesis tools, support training and deployment among server, mobile, embedded and IoT devices)

Tip

PaddleOCR now provides an MCP server that supports integration with Agent applications like Claude Desktop. For details, please refer to PaddleOCR MCP Server.

The PaddleOCR 3.0 Technical Report is now available. See details at: PaddleOCR 3.0 Technical Report

PaddleOCR converts documents and images into structured, AI-friendly data (like JSON and Markdown) with industry-leading accuracy—powering AI applications for everyone from indie developers and startups to large enterprises worldwide. With over 50,000 stars and deep integration into leading projects like MinerU, RAGFlow, and OmniParser, PaddleOCR has become the premier solution for developers building intelligent document applications in the AI era.

PaddleOCR 3.0 Core Features

In addition to providing an outstanding model library, PaddleOCR 3.0 also offers user-friendly tools covering model training, inference, and service deployment, so developers can rapidly bring AI applications to production.

2025.06.29: Release of PaddleOCR 3.1.0, includes: 2025.06.26: PaddleOCR 3.0.3 Released - Bug Fix: Resolved the issue where the `enable_mkldnn` parameter was not effective, restoring the default behavior of using MKL-DNN for CPU inference. 2025.06.19: PaddleOCR 3.0.2 Released - **New Features:** History Log

2025.06.05: PaddleOCR 3.0.1 Released, includes:

🔥🔥2025.05.20: Official Release of PaddleOCR v3.0, including:

History Log

Install PaddlePaddle refer to Installation Guide, after then, install the PaddleOCR toolkit.

# Install paddleocr
pip install paddleocr
# Run PP-OCRv5 inference
paddleocr ocr -i https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_ocr_002.png --use_doc_orientation_classify False --use_doc_unwarping False --use_textline_orientation False  

# Run PP-StructureV3 inference
paddleocr pp_structurev3 -i https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/pp_structure_v3_demo.png --use_doc_orientation_classify False --use_doc_unwarping False

# Get the Qianfan API Key at first, and then run PP-ChatOCRv4 inference
paddleocr pp_chatocrv4_doc -i https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/vehicle_certificate-1.png -k 驾驶室准乘人数 --qianfan_api_key your_api_key --use_doc_orientation_classify False --use_doc_unwarping False 

# Get more information about "paddleocr ocr"
paddleocr ocr --help

4.1 PP-OCRv5 Example

# Initialize PaddleOCR instance
from paddleocr import PaddleOCR
ocr = PaddleOCR(
    use_doc_orientation_classify=False,
    use_doc_unwarping=False,
    use_textline_orientation=False)

# Run OCR inference on a sample image 
result = ocr.predict(
    input="https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_ocr_002.png")

# Visualize the results and save the JSON results
for res in result:
    res.print()
    res.save_to_img("output")
    res.save_to_json("output")
4.2 PP-StructureV3 Example
from pathlib import Path
from paddleocr import PPStructureV3

pipeline = PPStructureV3(
    use_doc_orientation_classify=False,
    use_doc_unwarping=False
)

# For Image
output = pipeline.predict(
    input="https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/pp_structure_v3_demo.png",
)

# Visualize the results and save the JSON results
for res in output:
    res.print() 
    res.save_to_json(save_path="output") 
    res.save_to_markdown(save_path="output")           
4.3 PP-ChatOCRv4 Example
from paddleocr import PPChatOCRv4Doc

chat_bot_config = {
    "module_name": "chat_bot",
    "model_name": "ernie-3.5-8k",
    "base_url": "https://qianfan.baidubce.com/v2",
    "api_type": "openai",
    "api_key": "api_key",  # your api_key
}

retriever_config = {
    "module_name": "retriever",
    "model_name": "embedding-v1",
    "base_url": "https://qianfan.baidubce.com/v2",
    "api_type": "qianfan",
    "api_key": "api_key",  # your api_key
}

pipeline = PPChatOCRv4Doc(
    use_doc_orientation_classify=False,
    use_doc_unwarping=False
)

visual_predict_res = pipeline.visual_predict(
    input="https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/vehicle_certificate-1.png",
    use_common_ocr=True,
    use_seal_recognition=True,
    use_table_recognition=True,
)

mllm_predict_info = None
use_mllm = False
# If a multimodal large model is used, the local mllm service needs to be started. You can refer to the documentation: https://github.com/PaddlePaddle/PaddleX/blob/release/3.0/docs/pipeline_usage/tutorials/vlm_pipelines/doc_understanding.en.md performs deployment and updates the mllm_chat_bot_config configuration.
if use_mllm:
    mllm_chat_bot_config = {
        "module_name": "chat_bot",
        "model_name": "PP-DocBee",
        "base_url": "http://127.0.0.1:8080/",  # your local mllm service url
        "api_type": "openai",
        "api_key": "api_key",  # your api_key
    }

    mllm_predict_res = pipeline.mllm_pred(
        input="https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/vehicle_certificate-1.png",
        key_list=["驾驶室准乘人数"],
        mllm_chat_bot_config=mllm_chat_bot_config,
    )
    mllm_predict_info = mllm_predict_res["mllm_res"]

visual_info_list = []
for res in visual_predict_res:
    visual_info_list.append(res["visual_info"])
    layout_parsing_result = res["layout_parsing_result"]

vector_info = pipeline.build_vector(
    visual_info_list, flag_save_bytes_vector=True, retriever_config=retriever_config
)
chat_result = pipeline.chat(
    key_list=["驾驶室准乘人数"],
    visual_info=visual_info_list,
    vector_info=vector_info,
    mllm_predict_info=mllm_predict_info,
    chat_bot_config=chat_bot_config,
    retriever_config=retriever_config,
)
print(chat_result)
5. Chinese Heterogeneous AI Accelerators 🔄 Quick Overview of Execution Results

😃 Awesome Projects Leveraging PaddleOCR

PaddleOCR wouldn't be where it is today without its incredible community! 💗 A massive thank you to all our longtime partners, new collaborators, and everyone who's poured their passion into PaddleOCR — whether we've named you or not. Your support fuels our fire!

This project is released under the Apache 2.0 license.

@misc{cui2025paddleocr30technicalreport,
      title={PaddleOCR 3.0 Technical Report}, 
      author={Cheng Cui and Ting Sun and Manhui Lin and Tingquan Gao and Yubo Zhang and Jiaxuan Liu and Xueqing Wang and Zelun Zhang and Changda Zhou and Hongen Liu and Yue Zhang and Wenyu Lv and Kui Huang and Yichao Zhang and Jing Zhang and Jun Zhang and Yi Liu and Dianhai Yu and Yanjun Ma},
      year={2025},
      eprint={2507.05595},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2507.05595}, 
}

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4