A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://github.com/OptimalScale/LMFlow below:

OptimalScale/LMFlow: An Extensible Toolkit for Finetuning and Inference of Large Foundation Models. Large Models for All.

An extensible, convenient, and efficient toolbox for finetuning large machine learning models, designed to be user-friendly, speedy and reliable, and accessible to the entire community.

Important

More news...

Our package has been tested on Linux OS (Ubuntu 20.04). Other OS platforms (MacOS, Windows) are not fully tested, where you may encounter unexpected errors. If you are using LMFlow for the first time, we recommend you to try on a Linux machine or Google Colab.

git clone -b v1.0.0 https://github.com/OptimalScale/LMFlow.git
cd LMFlow
conda create -n lmflow python=3.9 -y
conda activate lmflow
conda install mpi4py
pip install -e .
Looking for a previous version?
git clone -b v0.0.10 https://github.com/OptimalScale/LMFlow.git
cd LMFlow
conda create -n lmflow python=3.9 -y
conda activate lmflow
conda install mpi4py
pip install -e .
For CUDA versions 10.3-11.7
git clone -b v0.0.5 https://github.com/OptimalScale/LMFlow.git
cd LMFlow
conda create -n lmflow python=3.9 -y
conda activate lmflow
conda install mpi4py
pip install -e .

Tip

We use WandB to track and visualize the training process by default. Before running the training scripts, users may need to log in to WandB using the command:

For detailed instructions, refer to the WandB Quickstart Guide. Step 1 (registration) and Step 2 (login using your WandB API key) should be sufficient to set up your environment.

Disabling wandb

One can disable wandb by either:

  1. Adding environment variable before running the training command.
export WANDB_MODE=disabled
  1. OR, specifying the integrations to report the results and logs to. In the training script, add:

Please refer to our doc.

Estimated Hardware Requirement Method 0.5B 3B 7B 14B 30B 70B xB Full bf16/fp16 9GB 55GB 120GB 240GB 600GB 1200GB 18xGB LoRA 1GB 6GB 16GB 32GB 64GB 160GB 2xGB QLoRA quant_bit=8 0.7GB 3GB 10GB 20GB 40GB 80GB xGB QLoRA quant_bit=4 0.4GB 1.5GB 6GB 12GB 24GB 48GB x/2GB

Full training updates all the parameters to finetune a language model. Here is an example to finetune a GPT-2 base model.

cd data && ./download.sh alpaca && cd -

bash ./scripts/run_finetune.sh \
  --model_name_or_path gpt2 \
  --dataset_path data/alpaca/train_conversation \
  --output_model_path output_models/finetuned_gpt2

Tip

For conversation dataset, specify a conversation template for better performance by adding --conversation_template to the command.

Llama-3-8B conversation dataset example
cd data && ./download.sh alpaca && cd -

bash ./scripts/run_finetune.sh \
 --model_name_or_path meta-llama/Meta-Llama-3-8B \
 --dataset_path data/alpaca/train_conversation \
 --conversation_template llama3 \
 --output_model_path output_models/finetuned_llama3_8b

LISA is a memory-efficient finetuning algorithm that allows tradeoff between memory and the number of randomly unfreezed layers. This script currently is only tested in single gpus. Please stay tuned for our latest updates 😄

cd data && ./download.sh alpaca && cd -

bash ./scripts/run_finetune_with_lisa.sh \
  --model_name_or_path meta-llama/Llama-2-7b-hf \
  --dataset_path data/alpaca/train_conversation \
  --output_model_path output_models/finetuned_llama2_7b \
  --lisa_activated_layers 1 \
  --lisa_interval_steps 20

Tip

Llama-2-7B conversation dataset example
cd data && ./download.sh alpaca && cd -

bash ./scripts/run_finetune_with_lisa.sh \
 --model_name_or_path meta-llama/Llama-2-7b-hf \
 --dataset_path data/alpaca/train_conversation \
 --conversation_template llama2 \
 --output_model_path output_models/finetuned_llama2_7b_lisa \
 --lisa_activated_layers 1 \
 --lisa_interval_steps 20

LoRA is a parameter-efficient finetuning algorithm and is more efficient than full finetuning.

cd data && ./download.sh alpaca && cd -

bash ./scripts/run_finetune_with_lora.sh \
  --model_name_or_path facebook/galactica-1.3b \
  --dataset_path data/alpaca/train_conversation \
  --output_lora_path output_models/finetuned_galactica_lora

Tip

Llama-2-7B conversation dataset example
cd data && ./download.sh alpaca && cd -

bash ./scripts/run_finetune_with_lora.sh \
 --model_name_or_path meta-llama/Llama-2-7b-hf \
 --dataset_path data/alpaca/train_conversation \
 --conversation_template llama2 \
 --output_model_path output_models/finetuned_llama2_7b_lora \
Merge LoRA Weight

Merge LoRA weight and the base model into one using:

bash ./scripts/run_merge_lora.sh \
 --model_name_or_path Qwen/Qwen1.5-1.8B \
 --lora_model_path output_models/lora \
 --output_model_path output_models/lora_merged \

After finetuning, you can run the following command to chat with the model.

bash ./scripts/run_chatbot.sh output_models/finetuned_gpt2

Tip

We recommend using vLLM for faster inference.

Faster inference using vLLM
bash ./scripts/run_vllm_inference.sh \
  --model_name_or_path Qwen/Qwen2-0.5B \
  --dataset_path data/alpaca/test_conversation \
  --output_dir data/inference_results \

If you want to deploy your own model locally, we provide a gradio-based UI for building chatbots. Running the following command will launch the demo for robin-7b:

pip install gradio
python ./examples/chatbot_gradio.py --deepspeed configs/ds_config_chatbot.json --model_name_or_path YOUR-LLAMA  --lora_model_path ./robin-7b --prompt_structure "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.###Human: {input_text}###Assistant:"       --end_string "#" --max_new_tokens 200

LMFlow Benchmark is an automatic evaluation framework for open-source large language models. We use negative log likelihood (NLL) as the metric to evaluate different aspects of a language model: chitchat, commonsense reasoning, and instruction following abilities.

You can directly run the LMFlow benchmark evaluation to obtain the results to participate in the LLM comparision. For example, to run GPT2 XL, one may execute

bash ./scripts/run_benchmark.sh --model_name_or_path gpt2-xl

--model_name_or_path is required, you may fill in huggingface model name or local model path here.

To check the evaluation results, you may check benchmark.log in ./output_dir/gpt2-xl_lmflow_chat_nll_eval, ./output_dir/gpt2-xl_all_nll_eval and ./output_dir/gpt2-xl_commonsense_qa_eval.

Finetune Acceleration & Memory Optimization Inference Acceleration Long Context Model Customization Multimodal Custom Optimization

If you need any help, please submit a Github issue.

The code included in this project is licensed under the Apache 2.0 license. If you wish to use the codes and models included in this project for commercial purposes, please sign this document to obtain authorization.

If you find this repository useful, please consider giving ⭐ and citing our paper:

@article{diao2023lmflow,
  title={Lmflow: An extensible toolkit for finetuning and inference of large foundation models},
  author={Diao, Shizhe and Pan, Rui and Dong, Hanze and Shum, Ka Shun and Zhang, Jipeng and Xiong, Wei and Zhang, Tong},
  journal={arXiv preprint arXiv:2306.12420},
  year={2023}
}
@article{dong2023raft,
  title={Raft: Reward ranked finetuning for generative foundation model alignment},
  author={Dong, Hanze and Xiong, Wei and Goyal, Deepanshu and Pan, Rui and Diao, Shizhe and Zhang, Jipeng and Shum, Kashun and Zhang, Tong},
  journal={arXiv preprint arXiv:2304.06767},
  year={2023}
}
@article{pan2024lisa,
  title={LISA: Layerwise Importance Sampling for Memory-Efficient Large Language Model Fine-Tuning}, 
  author={Pan, Rui and Liu, Xiang and Diao, Shizhe and Pi, Renjie and Zhang, Jipeng and Han, Chi and Zhang, Tong},
  journal={arXiv preprint arXiv:2403.17919},
  year={2024}
}

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4