A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://github.com/NVIDIA/TensorRT below:

NVIDIA/TensorRT: NVIDIA® TensorRT™ is an SDK for high-performance deep learning inference on NVIDIA GPUs. This repository contains the open source components of TensorRT.

TensorRT Open Source Software

This repository contains the Open Source Software (OSS) components of NVIDIA TensorRT. It includes the sources for TensorRT plugins and ONNX parser, as well as sample applications demonstrating usage and capabilities of the TensorRT platform. These open source software components are a subset of the TensorRT General Availability (GA) release with some extensions and bug-fixes.

Need enterprise support? NVIDIA global support is available for TensorRT with the NVIDIA AI Enterprise software suite. Check out NVIDIA LaunchPad for free access to a set of hands-on labs with TensorRT hosted on NVIDIA infrastructure.

Join the TensorRT and Triton community and stay current on the latest product updates, bug fixes, content, best practices, and more.

Prebuilt TensorRT Python Package

We provide the TensorRT Python package for an easy installation.
To install:

You can skip the Build section to enjoy TensorRT with Python.

To build the TensorRT-OSS components, you will first need the following software packages.

TensorRT GA build

System Packages

Optional Packages

Downloading TensorRT Build
  1. git clone -b main https://github.com/nvidia/TensorRT TensorRT
    cd TensorRT
    git submodule update --init --recursive
  2. (Optional - if not using TensorRT container) Specify the TensorRT GA release build path

    If using the TensorRT OSS build container, TensorRT libraries are preinstalled under /usr/lib/x86_64-linux-gnu and you may skip this step.

    Else download and extract the TensorRT GA build from NVIDIA Developer Zone with the direct links below:

    Example: Ubuntu 20.04 on x86-64 with cuda-12.9

    cd ~/Downloads
    tar -xvzf TensorRT-10.13.0.35.Linux.x86_64-gnu.cuda-12.9.tar.gz
    export TRT_LIBPATH=`pwd`/TensorRT-10.13.0.35

    Example: Windows on x86-64 with cuda-12.9

    Expand-Archive -Path TensorRT-10.13.0.35.Windows.win10.cuda-12.9.zip
    $env:TRT_LIBPATH="$pwd\TensorRT-10.13.0.35\lib"
Setting Up The Build Environment

For Linux platforms, we recommend that you generate a docker container for building TensorRT OSS as described below. For native builds, please install the prerequisite System Packages.

  1. Generate the TensorRT-OSS build container.

    Example: Ubuntu 20.04 on x86-64 with cuda-12.9 (default)

    ./docker/build.sh --file docker/ubuntu-20.04.Dockerfile --tag tensorrt-ubuntu20.04-cuda12.9

    Example: Rockylinux8 on x86-64 with cuda-12.9

    ./docker/build.sh --file docker/rockylinux8.Dockerfile --tag tensorrt-rockylinux8-cuda12.9

    Example: Ubuntu 22.04 cross-compile for Jetson (aarch64) with cuda-12.9 (JetPack SDK)

    ./docker/build.sh --file docker/ubuntu-cross-aarch64.Dockerfile --tag tensorrt-jetpack-cuda12.9

    Example: Ubuntu 22.04 on aarch64 with cuda-12.9

    ./docker/build.sh --file docker/ubuntu-22.04-aarch64.Dockerfile --tag tensorrt-aarch64-ubuntu22.04-cuda12.9
  2. Launch the TensorRT-OSS build container.

    Example: Ubuntu 20.04 build container

    ./docker/launch.sh --tag tensorrt-ubuntu20.04-cuda12.9 --gpus all

    NOTE:
    1. Use the --tag corresponding to build container generated in Step 1.
    2. NVIDIA Container Toolkit is required for GPU access (running TensorRT applications) inside the build container.
    3. sudo password for Ubuntu build containers is 'nvidia'.
    4. Specify port number using --jupyter <port> for launching Jupyter notebooks.


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4