A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://github.com/MIDASverse/MIDASpy below:

MIDASverse/MIDASpy: Python package for missing-data imputation with deep learning

MIDASpy

MIDASpy is a Python package for multiply imputing missing data using deep learning methods. The MIDASpy algorithm offers significant accuracy and efficiency advantages over other multiple imputation strategies, particularly when applied to large datasets with complex features. In addition to implementing the algorithm, the package contains functions for processing data before and after model training, running imputation model diagnostics, generating multiple completed datasets, and estimating regression models on these datasets.

For an implementation in R, see our rMIDAS repository here.

Background and suggested citations

For more information on MIDAS, the method underlying the software, see:

Lall, Ranjit, and Thomas Robinson. 2022. "The MIDAS Touch: Accurate and Scalable Missing-Data Imputation with Deep Learning." Political Analysis 30, no. 2: 179-196. doi:10.1017/pan.2020.49. Published version. Accepted version.

Lall, Ranjit, and Thomas Robinson. 2023. "Efficient Multiple Imputation for Diverse Data in Python and R: MIDASpy and rMIDAS." Journal of Statistical Software 107, no. 9: 1-38. doi:10.18637/jss.v107.i09. Published version.

To install via pip, enter the following command into the terminal:
pip install MIDASpy

The latest development version (potentially unstable) can be installed via the terminal with:
pip install git+https://github.com/MIDASverse/MIDASpy.git

MIDAS requires:

Tensorflow also has a number of requirements, particularly if GPU acceleration is desired. See https://www.tensorflow.org/install/ for details.

For a simple demonstration of MIDASpy, see our Jupyter Notebook examples.

Interested in contributing to MIDASpy? We are looking to hire a research assistant to work part-time (flexibly) to help us build out new features and integrate our software with existing machine learning pipelines. You would be paid the standard research assistant rate at the University of Oxford. To apply, please send your CV (or a summary of relevant skills/experience) to ranjit.lall@sjc.ox.ac.uk.

Version 1.4.0 (August 2024) Version 1.3.1 (October 2023) Version 1.2.4 (August 2023) Version 1.2.3 (December 2022)

v1.2.3 adds support for installation on Apple Silicon hardware (i.e. M1 and M2 Macs).

Version 1.2.2 (July 2022)

v1.2.2 makes minor efficiency changes to the codebase. Full details are available in the Release logs.

Version 1.2.1 (January 2021)

v1.2.1 adds new pre-processing functionality and a multiple imputation regression function.

Users can now automatically preprocess binary and categorical columns prior to running the MIDAS algorithm using binary_conv() and cat_conv().

The new combine() function allows users to run regression analysis across the complete data, following Rubin’s combination rules.

Version 1.1.1 (October 2020)

Key changes:

Version 1.0.2 (September 2020)

Key changes:

Alpha 0.2:

Variational autoencoder enabled. More flexibility in model specification, although defaulting to a simple mirrored system. Deeper analysis tools within .overimpute() for checking fit on continuous values. Constructor code deconflicted. Individual output specification enabled for very large datasets.

Key added features:

Planned features:

Wish list:

Alpha 0.1:


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4