The R package RRRR provides methods for estimating online Robust Reduced-Rank Regression.
To cite package ‘RRRR’ in publications use:
Yangzhuoran Fin Yang and Ziping Zhao (2023). RRRR: Online Robust Reduced-Rank Regression Estimation. R package version 1.1.1. https://pkg.yangzhuoranyang.com/RRRR/.
You can install the stable version on R CRAN.
You can install the development version from Github with:
# install.packages("devtools") devtools::install_github("FinYang/RRRR")
The R package RRRR provides the following estimation methods.
RRR
RRRR
ORRRR
RRR
): update.RRRR
See the vignette for a more detailed illustration.
library(RRRR) set.seed(2222) data <- RRR_sim() res <- ORRRR(y=data$y, x=data$x, z=data$z) res #> Online Robust Reduced-Rank Regression #> ------ #> Stochastic Majorisation-Minimisation #> ------------ #> Specifications: #> N P R r initial_size addon #> 1000 3 1 1 100 10 #> #> Coefficients: #> mu A B D Sigma1 Sigma2 Sigma3 #> 1 0.078343 -0.167661 1.553252 0.204748 0.656940 -0.044872 0.050316 #> 2 0.139471 0.442293 0.919832 1.138335 -0.044872 0.657402 -0.063890 #> 3 0.106746 0.801818 -0.693768 1.955019 0.050316 -0.063890 0.698777 plot(res)
newdata <- RRR_sim(A = data$spec$A, B = data$spec$B, D = data$spec$D) res2 <- update(res, newy=newdata$y, newx=newdata$x, newz=newdata$z) res2 #> Online Robust Reduced-Rank Regression #> ------ #> Stochastic Majorisation-Minimisation #> ------------ #> Specifications: #> N P R r initial_size addon #> 2000 3 1 1 1010 10 #> #> Coefficients: #> mu A B D Sigma1 Sigma2 Sigma3 #> 1 0.073939 -0.159814 1.520309 0.208943 0.675436 -0.021789 0.040888 #> 2 0.142791 0.450992 0.962698 1.117024 -0.021789 0.679136 -0.024140 #> 3 0.107647 0.817590 -0.670435 1.957084 0.040888 -0.024140 0.703949 plot(res2)
This package is free and open source software, licensed under GPL-3.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4