A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://github.com/FanXuRong/SingleCellComplexHeatMap below:

GitHub - FanXuRong/SingleCellComplexHeatMap

A R package for creating complex heatmaps for single cell RNA-seq data that simultaneously display gene expression levels (as color intensity) and expression percentages (as circle sizes).

# Install from GitHub (when available)
# devtools::install_github("xuecheng328/SingleCellComplexHeatMap")

# For now, install locally
devtools::install_local("/path/to/SingleCellComplexHeatMap")
Main Function: create_single_cell_complex_heatmap() Data Organization Parameters Color and Style Parameters Visual Appearance Parameters Display Control Parameters Customization Parameters (NEW) prepare_expression_matrices()
prepare_expression_matrices(
  seurat_object,           # Required: Seurat object
  features,                # Required: Gene names
  group_by = "seurat_clusters",
  idents = NULL,
  split_pattern = "_",
  time_position = 1,
  celltype_start = 2
)
create_gene_annotations()
create_gene_annotations(
  exp_mat,                 # Required: Expression matrix
  percent_mat,             # Required: Percentage matrix
  gene_classification,     # Required: Gene groups
  color_palette = "Set1",  # ENHANCED: Now supports color vectors
  sort_within_groups = TRUE,
  annotation_title = "Gene Group"  # NEW: Custom title
)
create_cell_annotations()
create_cell_annotations(
  exp_mat,                 # Required: Expression matrix
  percent_mat,             # Required: Percentage matrix
  split_pattern = "_",
  time_position = 1,
  celltype_start = 2,
  time_points_order = NULL,
  cell_types_order = NULL,
  time_color_palette = "Accent",    # ENHANCED: Now supports color vectors
  celltype_color_palette = "Dark2", # ENHANCED: Now supports color vectors
  show_time_annotation = TRUE,
  show_celltype_annotation = TRUE,
  time_point_title = "Time Point",  # NEW: Custom title
  cell_type_title = "Cell Type"     # NEW: Custom title
)

Important: This package expects your group identifiers to follow the format "timepoint_celltype" when you want to display both time and cell type information.

library(dplyr)

# Method 1: Create combined group column (recommended for time course + cell type analysis)
seurat_obj@meta.data <- seurat_obj@meta.data %>%
  mutate(group = paste(timepoint, celltype, sep = "_"))

# Example result: "Mock_Epidermis", "24hpi_Guard_cell", etc.

# Method 2: Use existing metadata columns for simpler analysis
# If you only want cell type information:
# group_by = "celltype"
# If you only want cluster information:
# group_by = "seurat_clusters"
Basic Usage with All Default Parameters
library(SingleCellComplexHeatMap)

# Minimal usage
heatmap <- create_single_cell_complex_heatmap(
  seurat_object = seurat_obj,
  features = gene_list
)
Complete Parameter Customization
# Full customization example
heatmap <- create_single_cell_complex_heatmap(
  seurat_object = seurat_obj,
  features = gene_list,
  gene_classification = gene_groups,
  group_by = "group",
  idents = c(9, 10, 13),
  time_points_order = c("Mock", "24hpi", "48hpi", "72hpi"),
  cell_types_order = c("Epidermis", "Guard_cell", "Mesophyll"),
  color_range = c(-2, 0, 3),
  color_palette = c("blue", "white", "red"),
  max_circle_size = 3,
  row_fontsize = 10,
  col_fontsize = 8,
  col_name_rotation = 45,
  row_title_fontsize = 12,
  col_title_fontsize = 12,
  show_heatmap_legend = TRUE,
  show_percentage_legend = TRUE,
  legend_side = "bottom",
  merge_legends = FALSE,
  percentage_legend_title = "% Expressing Cells",
  percentage_legend_labels = c("0", "20", "40", "60", "80", "100"),
  cell_border_color = "white",
  split_pattern = "_",
  gene_color_palette = "Dark2",
  time_color_palette = "Set3",
  celltype_color_palette = "Paired",
  show_gene_grouping = TRUE,
  show_time_annotation = TRUE,
  show_celltype_annotation = TRUE,
  split_by = "celltype",
  gene_group_title = "Gene Categories",
  time_point_title = "Treatment Time",
  cell_type_title = "Cell Types",
  show_cell_borders = TRUE,
  show_column_annotation = TRUE,
  gene_name_mapping = NULL
)
1. Full Analysis (Time + Cell Type + Gene Groups)
# Prepare data with combined group
seurat_obj@meta.data <- seurat_obj@meta.data %>%
  mutate(group = paste(sample, Cell_type, sep = "_"))

gene_groups <- list(
  "Senescence" = c("Gene1", "Gene2", "Gene3"),
  "Stress_Response" = c("Gene4", "Gene5", "Gene6")
)

heatmap <- create_single_cell_complex_heatmap(
  seurat_object = seurat_obj,
  features = c("Gene1", "Gene2", "Gene3", "Gene4", "Gene5", "Gene6"),
  gene_classification = gene_groups,
  group_by = "group",
  time_points_order = c("Mock", "24hpi", "48hpi", "72hpi"),
  cell_types_order = c("Cell_cycle", "Companion_cell", "Epidermis")
)
2. Cell Type Only Analysis
heatmap <- create_single_cell_complex_heatmap(
  seurat_object = seurat_obj,
  features = your_genes,
  group_by = "celltype",  # Use existing celltype column
  show_time_annotation = FALSE,
  split_by = "none"
)
3. Simple Expression Analysis (No Grouping)
heatmap <- create_single_cell_complex_heatmap(
  seurat_object = seurat_obj,
  features = your_genes,
  gene_classification = NULL,  # No gene grouping
  group_by = "seurat_clusters",
  show_time_annotation = FALSE,
  show_celltype_annotation = FALSE,
  split_by = "none"
)
# Using different color palettes
heatmap <- create_single_cell_complex_heatmap(
  seurat_object = seurat_obj,
  features = your_genes,
  gene_classification = gene_groups,
  color_range = c(-1.5, 0, 1.5, 3),  # 4-point color range
  color_palette = c("darkblue", "blue", "white", "red", "darkred"),
  gene_color_palette = "Spectral",
  time_color_palette = "Set2",
  celltype_color_palette = "Pastel1"
)
5. Large Dataset Optimization
# For large datasets, reduce visual complexity
heatmap <- create_single_cell_complex_heatmap(
  seurat_object = seurat_obj,
  features = your_genes,
  max_circle_size = 1.5,  # Smaller circles
  row_fontsize = 6,       # Smaller font
  col_fontsize = 6,
  cell_border_color = NA, # No borders for cleaner look
  merge_legends = TRUE    # Compact legends
)
6. Publication-Ready Styling
# High-quality publication figure
heatmap <- create_single_cell_complex_heatmap(
  seurat_object = seurat_obj,
  features = your_genes,
  gene_classification = gene_groups,
  color_range = c(-2, 0, 2),
  color_palette = c("#2166AC", "#F7F7F7", "#B2182B"),  # Custom colors
  max_circle_size = 2.5,
  row_fontsize = 10,
  col_fontsize = 10,
  row_title_fontsize = 12,
  col_title_fontsize = 12,
  percentage_legend_title = "Fraction of cells",
  percentage_legend_labels = c("0", "0.25", "0.50", "0.75", "1.0"),
  legend_side = "right",
  merge_legends = TRUE,
  gene_group_title = "Functional Categories",
  time_point_title = "Time Points",
  cell_type_title = "Cell Types",
  show_cell_borders = TRUE,
  cell_border_color = "white"
)

This section details all parameters for the create_single_cell_complex_heatmap function.

New Customization Parameters
# Viridis colors
color_palette = viridis::viridis(3)

# Custom RGB colors
color_palette = c("#440154", "#21908C", "#FDE725")

# Named colors
color_palette = c("navy", "white", "firebrick")
# Step 1: Prepare matrices
matrices <- prepare_expression_matrices(
  seurat_object = seurat_obj,
  features = your_genes,
  group_by = "group",
  idents = c(9, 10, 13)  # Specific cell clusters
)

# Step 2: Create gene annotations (if needed)
if (!is.null(gene_groups)) {
  gene_ann <- create_gene_annotations(
    exp_mat = matrices$exp_mat,
    percent_mat = matrices$percent_mat,
    gene_classification = gene_groups
  )
}

# Step 3: Create cell annotations
cell_ann <- create_cell_annotations(
  exp_mat = gene_ann$exp_mat_ordered,
  percent_mat = gene_ann$percent_mat_ordered,
  time_points_order = c("Mock", "24hpi", "48hpi", "72hpi"),
  cell_types_order = c("Epidermis", "Guard_cell", "Mesophyll")
)

For optimal functionality, ensure your column identifiers follow these patterns:

The package automatically parses:

MIT License - see LICENSE file for details.


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4