This package implements a Shiny Item Analysis module for computing binary classification metrics from inter-rater reliability based on Bartoš & Martinková (2022).
You can install the development version of IRR2FPR
like so:
devtools::install_github("FBartos/IRR2FPR")
The module can be used interactively via the Shiny Item Analysis:
library(ShinyItemAnalysis) library(IRR2FPR) run_app()
Furthermore, the functions can be also accessed directly from R. For example, we use the results reported in Erosheva et. al (2021) to compute the binary classification metrics:
library(IRR2FPR) # use results based on Erosheva et. al (2021) IRR <- spearman_brown_formula(0.34, 2.79) prop_sel <- 0.18 # compute the binary classification metrics compute_true_positive_rate(IRR, prop_sel) #> [1] 0.6027441 compute_false_positive_rate(IRR, prop_sel) #> [1] 0.3972559 compute_false_negative_rate(IRR, prop_sel) #> [1] 0.08720251
and visualize the metrics across the range of possible proportions of selected candidates.
par(mar=c(4,4,0.1, 0.1)) plot(NA, type = "n", axes = TRUE, bty = "n", xlab = "Proportion selected", ylab = "True positive rate", xlim = c(0, 1), ylim = c(0, 1), las = 1) x_seq <- seq(0, 1, 0.01) lines(x_seq, compute_true_positive_rate(IRR = IRR, proportion_selected = x_seq), lwd = 2) points(prop_sel, compute_true_positive_rate(IRR = IRR, proportion_selected = prop_sel), pch = 16, cex = 1.5)
par(mar=c(4,4,0.1, 0.1)) plot(NA, type = "n", axes = TRUE, bty = "n", xlab = "Proportion selected", ylab = "False positive rate", xlim = c(0, 1), ylim = c(0, 1), las = 1) x_seq <- seq(0, 1, 0.01) lines(x_seq, compute_false_positive_rate(IRR = IRR, proportion_selected = x_seq), lwd = 2) points(prop_sel, compute_false_positive_rate(IRR = IRR, proportion_selected = prop_sel), pch = 16, cex = 1.5)
par(mar=c(4,4,0.1, 0.1)) plot(NA, type = "n", axes = TRUE, bty = "n", xlab = "Proportion selected", ylab = "False negative rate", xlim = c(0, 1), ylim = c(0, 1), las = 1) x_seq <- seq(0, 1, 0.01) lines(x_seq, compute_false_negative_rate(IRR = IRR, proportion_selected = x_seq), lwd = 2) points(prop_sel, compute_false_negative_rate(IRR = IRR, proportion_selected = prop_sel), pch = 16, cex = 1.5)
Bartoš, F., & Martinková, P. (2022). Selecting applicants based on multiple ratings: Using binary classification framework as an alternative to inter-rater reliability. (https://arxiv.org/abs/2207.09101v2)
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4