Features:
clf.feature_importance()
)clf.best_round
)GridSearchCV
, cross_val_score
, etc...verbose=False
)Install lastest verion of Microsoft LightGBM then install the wrapper:
pip install git+https://github.com/ArdalanM/pyLightGBM.git
import numpy as np from sklearn import datasets, metrics, model_selection from pylightgbm.models import GBMRegressor # full path to lightgbm executable (on Windows include .exe) exec = "~/Documents/apps/LightGBM/lightgbm" X, y = datasets.load_diabetes(return_X_y=True) clf = GBMRegressor(exec_path=exec, num_iterations=100, early_stopping_round=10, num_leaves=10, min_data_in_leaf=10) x_train, x_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.2) clf.fit(x_train, y_train, test_data=[(x_test, y_test)]) print("Mean Square Error: ", metrics.mean_squared_error(y_test, clf.predict(x_test)))
import numpy as np from sklearn import datasets, metrics, model_selection from pylightgbm.models import GBMClassifier # full path to lightgbm executable (on Windows include .exe) exec = "~/Documents/apps/LightGBM/lightgbm" X, Y = datasets.make_classification(n_samples=200, n_features=10) x_train, x_test, y_train, y_test = model_selection.train_test_split(X, Y, test_size=0.2) clf = GBMClassifier(exec_path=exec, min_data_in_leaf=1) clf.fit(x_train, y_train, test_data=[(x_test, y_test)]) y_pred = clf.predict(x_test) print("Accuracy: ", metrics.accuracy_score(y_test, y_pred))
import numpy as np from sklearn import datasets, metrics, model_selection from pylightgbm.models import GBMClassifier # full path to lightgbm executable (on Windows include .exe) exec = "~/Documents/apps/LightGBM/lightgbm" X, Y = datasets.make_classification(n_samples=1000, n_features=10) gbm = GBMClassifier(exec_path=exec, metric='binary_error', early_stopping_round=10, bagging_freq=10) param_grid = {'learning_rate': [0.1, 0.04], 'bagging_fraction': [0.5, 0.9]} scorer = metrics.make_scorer(metrics.accuracy_score, greater_is_better=True) clf = model_selection.GridSearchCV(gbm, param_grid, scoring=scorer, cv=2) clf.fit(X, Y) print("Best score: ", clf.best_score_) print("Best params: ", clf.best_params_)
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4