The AgentOps MCP server provides access to observability and tracing data for debugging complex AI agent runs. This adds crucial context about where the AI agent succeeds or fails.
Add the following to your MCP configuration file:
{ "mcpServers": { "agentops-mcp": { "command": "npx", "args": ["agentops-mcp"], "env": { "AGENTOPS_API_KEY": "" } } } }Installing via Cursor Deeplink
To install agentops-mcp for Claude Desktop automatically via Smithery:
npx -y @smithery/cli install @AgentOps-AI/agentops-mcp --client claude
To build the MCP server locally:
# Clone and setup git clone https://github.com/AgentOps-AI/agentops-mcp.git cd mcp npm install # Build the project npm run build # Run the server npm pack
Authorize using an AgentOps project API key and return JWT token.
Parameters:
api_key
(string): Your AgentOps project API keyRetrieve trace information by ID.
Parameters:
trace_id
(string): The trace ID to retrieveGet span information by ID.
Parameters:
span_id
(string): The span ID to retrieveGet comprehensive trace information including all spans and their metrics.
Parameters:
trace_id
(string): The trace IDRetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4