A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://gaia.esac.esa.int/documentation/GDR2/index.html below:

Gaia Data Release 2Documentation release 1.2

Executive summary

The second Gaia data release, Gaia DR2, encompasses astrometry, photometry, radial velocities, astrophysical parameters (stellar effective temperature, extinction, reddening, radius, and luminosity), and variability information plus astrometry and photometry for a sample of pre-selected bodies in the solar system. The basic number statistics of the contents of Gaia DR2 are as follows:

The basic quality statistics of the contents of Gaia DR2 are as follows (where the astrometric uncertainties as well as the Gaia-CRF2 alignment and rotation limits refer to epoch J2015.5 TCB):

The above uncertainties on the photometry refer to the mean magnitudes listed in the main Gaia DR2 catalogue. The Gaia DR2 parallaxes show evidence for a global zeropoint, in the sense Gaia  - ’true’, of about - 0.03  mas, which has not been ’corrected’ in the data (for details, see Lindegren et al. 2018; Arenou et al. 2018).

The data collected during the first 22 months of the nominal, five-year mission have been processed by the Gaia Data Processing and Analysis Consortium (DPAC), resulting into this second data release. A summary of the release properties is provided in Gaia Collaboration et al. (2018b). The overall scientific validation of the data is described in Arenou et al. (2018). Background information on the mission and the spacecraft can be found in Gaia Collaboration et al. (2016), with a more detailed presentation of the Radial Velocity Spectrometer (RVS) in Cropper et al. (2018). In addition, Gaia DR2 is accompanied by various, dedicated papers that describe the processing and validation of the various data products: Lindegren et al. (2018) for the Gaia DR2 astrometry, Riello et al. (2018) and Evans et al. (2018) for the Gaia DR2 photometry, Sartoretti et al. (2018), Soubiran et al. (2018), and Katz et al. (2018) for the Gaia DR2 spectroscopy (radial velocities), Holl et al. (2018) for the Gaia DR2 variability, Andrae et al. (2018) for the Gaia DR2 astrophysical parameters, Gaia Collaboration et al. (2018f) for the Solar-system objects, and Mignard et al. (2018) for the celestial reference frame. Four more papers present a glimpse of the scientific richness of the data in the areas of the Hertzsprung-Russell diagram (Gaia Collaboration et al. 2018a), the mapping of the kinematics and large-scale structure of the Milky Way (Gaia Collaboration et al. 2018e), parallaxes and proper motions of Milky Way satellite galaxies (Gaia Collaboration et al. 2018d), and variable stars in the colour-magnitude diagram (Gaia Collaboration et al. 2018c). In addition to the set of references mentioned above, this documentation provides a detailed, complete overview of the processing and validation of the Gaia DR2 data.

Gaia data, from both Gaia DR1 and Gaia DR2, can be retrieved from the Gaia archive, which is accessible from https://archives.esac.esa.int/gaia. The archive also provides various tutorials on data access and data queries plus an integrated data model (i.e., description of the various fields in the data tables). In addition, Luri et al. (2018) provide concrete advice on how to deal with Gaia astrometry, with recommendations on how best to estimate distances from parallaxes. The Gaia archive features an enhanced visualisation service, described in Moitinho et al. (2018), which can be used for quick initial explorations of the entire Gaia DR2 data set. Pre-computed cross matches between Gaia DR2 and a selected set of large surveys is provided, with details described in Marrese et al. (2019).

Gaia DR2 represents a major advance with respect to Gaia DR1 in terms of survey completeness, precision and accuracy, and the richness of the published data. Nevertheless, Gaia DR2 is still an early release based on a limited amount of input data, simplifications in the data processing, and imperfect calibrations. Many limitations hence exist (as described in Gaia Collaboration et al. 2018b) and we summarise here the most important ones that the user of Gaia DR2 should be aware of:

Summary of miscellaneous links:


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4