ESLint’s rules can use code paths. The code path is execution routes of programs. It forks/joins at such as if
statements.
Tipif (a && b) { foo(); } bar();
1
2
3
4
You can view code path diagrams for any JavaScript code using Code Explorer.
ObjectsProgram is expressed with several code paths. A code path is expressed with objects of two kinds: CodePath
and CodePathSegment
.
CodePath
CodePath
expresses whole of one code path. This object exists for each function and the global. This has references of both the initial segment and the final segments of a code path.
CodePath
has the following properties:
id
(string
) - A unique string. Respective rules can use id
to save additional information for each code path.origin
(string
) - The reason that the code path was started. May be "program"
, "function"
, "class-field-initializer"
, or "class-static-block"
.initialSegment
(CodePathSegment
) - The initial segment of this code path.finalSegments
(CodePathSegment[]
) - The final segments which includes both returned and thrown.returnedSegments
(CodePathSegment[]
) - The final segments which includes only returned.thrownSegments
(CodePathSegment[]
) - The final segments which includes only thrown.upper
(CodePath|null
) - The code path of the upper function/global scope.childCodePaths
(CodePath[]
) - Code paths of functions this code path contains.CodePathSegment
CodePathSegment
is a part of a code path. A code path is expressed with plural CodePathSegment
objects, it’s similar to doubly linked list. Difference from doubly linked list is what there are forking and merging (the next/prev are plural).
CodePathSegment
has the following properties:
id
(string
) - A unique string. Respective rules can use id
to save additional information for each segment.nextSegments
(CodePathSegment[]
) - The next segments. If forking, there are two or more. If final, there is nothing.prevSegments
(CodePathSegment[]
) - The previous segments. If merging, there are two or more. If initial, there is nothing.reachable
(boolean
) - A flag which shows whether or not it’s reachable. This becomes false
when preceded by return
, throw
, break
, or continue
.There are seven events related to code paths, and you can define event handlers by adding them alongside node visitors in the object exported from the create()
method of your rule.
Aboutmodule.exports = { meta: { }, create(context) { return { onCodePathStart(codePath, node) { }, onCodePathEnd(codePath, node) { }, onCodePathSegmentStart(segment, node) { }, onCodePathSegmentEnd(segment, node) { }, onUnreachableCodePathSegmentStart(segment, node) { }, onUnreachableCodePathSegmentEnd(segment, node) { }, onCodePathSegmentLoop(fromSegment, toSegment, node) { }, }; }, };
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
onCodePathSegmentLoop
This event is always fired when the next segment has existed already. That timing is the end of loops mainly.
For Example 1:
while (a) { a = foo(); } bar();
1
2
3
4
onCodePathSegmentStart
event is not fired. It fires onCodePathSegmentLoop
instead.For example 2:
for (let i = 0; i < 10; ++i) { foo(i); } bar();
1
2
3
4
for
statements are more complex. First, the analysis advances to ForStatement.update
. The update
segment is hovered at first.ForStatement.body
. Of course the body
segment is preceded by the test
segment. It keeps the update
segment hovering.body
segment to update
segment. At this time, the next segment has existed already, so the onCodePathSegmentStart
event is not fired. It fires onCodePathSegmentLoop
instead.update
segment to test
segment. At this time, the next segment has existed already, so the onCodePathSegmentStart
event is not fired. It fires onCodePathSegmentLoop
instead.To track the current code path segment position, you can define a rule like this:
module.exports = { meta: { }, create(context) { let currentCodePath; let currentSegments; const allCurrentSegments = []; return { onCodePathStart(codePath) { currentCodePath = codePath; allCurrentSegments.push(currentSegments); currentSegments = new Set(); }, onCodePathEnd(codePath) { currentCodePath = codePath.upper; currentSegments = allCurrentSegments.pop(); }, onCodePathSegmentStart(segment) { currentSegments.add(segment); }, onCodePathSegmentEnd(segment) { currentSegments.delete(segment); }, onUnreachableCodePathSegmentStart(segment) { currentSegments.add(segment); }, onUnreachableCodePathSegmentEnd(segment) { currentSegments.delete(segment); }, }; }, };
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
In this example, the currentCodePath
variable is used to access the code path that is currently being traversed and the currentSegments
variable tracks the segments in that code path that have been traversed to that point. Note that currentSegments
both starts and ends as an empty set, constantly being updated as the traversal progresses.
Tracking the current segment position is helpful for analyzing the code path that led to a particular node, as in the next example.
Find an unreachable nodeTo find an unreachable node, track the current segment position and then use a node visitor to check if any of the segments are reachable. For example, the following looks for any ExpressionStatement
that is unreachable.
function areAnySegmentsReachable(segments) { for (const segment of segments) { if (segment.reachable) { return true; } } return false; } module.exports = { meta: { }, create(context) { let currentCodePath; let currentSegments; const allCurrentSegments = []; return { onCodePathStart(codePath) { currentCodePath = codePath; allCurrentSegments.push(currentSegments); currentSegments = new Set(); }, onCodePathEnd(codePath) { currentCodePath = codePath.upper; currentSegments = allCurrentSegments.pop(); }, onCodePathSegmentStart(segment) { currentSegments.add(segment); }, onCodePathSegmentEnd(segment) { currentSegments.delete(segment); }, onUnreachableCodePathSegmentStart(segment) { currentSegments.add(segment); }, onUnreachableCodePathSegmentEnd(segment) { currentSegments.delete(segment); }, ExpressionStatement(node) { if (!areAnySegmentsReachable(currentSegments)) { context.report({ message: "Unreachable!", node }); } }, }; }, };
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
See Also: no-unreachable, no-fallthrough, consistent-return
Check if a function is called in every pathThis example checks whether or not the parameter cb
is called in every path. Instances of CodePath
and CodePathSegment
are shared to every rule. So a rule must not modify those instances. Please use a map of information instead.
function hasCb(node, context) { if (node.type.indexOf("Function") !== -1) { const sourceCode = context.sourceCode; return sourceCode.getDeclaredVariables(node).some(function (v) { return v.type === "Parameter" && v.name === "cb"; }); } return false; } function isCbCalled(info) { return info.cbCalled; } module.exports = { meta: { }, create(context) { let funcInfo; const funcInfoStack = []; const segmentInfoMap = Object.create(null); return { onCodePathStart(codePath, node) { funcInfoStack.push(funcInfo); funcInfo = { codePath: codePath, hasCb: hasCb(node, context), currentSegments: new Set(), }; }, onCodePathEnd(codePath, node) { funcInfo = funcInfoStack.pop(); const cbCalled = codePath.finalSegments.every( function (segment) { const info = segmentInfoMap[segment.id]; return info.cbCalled; }, ); if (!cbCalled) { context.report({ message: "`cb` should be called in every path.", node: node, }); } }, onCodePathSegmentStart(segment) { funcInfo.currentSegments.add(segment); if (!funcInfo.hasCb) { return; } const info = (segmentInfoMap[segment.id] = { cbCalled: false, }); if (segment.prevSegments.length > 0) { info.cbCalled = segment.prevSegments.every(isCbCalled); } }, onUnreachableCodePathSegmentStart(segment) { funcInfo.currentSegments.add(segment); }, onCodePathSegmentEnd(segment) { funcInfo.currentSegments.delete(segment); }, onUnreachableCodePathSegmentEnd(segment) { funcInfo.currentSegments.delete(segment); }, CallExpression(node) { if (!funcInfo.hasCb) { return; } const callee = node.callee; if (callee.type === "Identifier" && callee.name === "cb") { funcInfo.currentSegments.forEach(segment => { const info = segmentInfoMap[segment.id]; info.cbCalled = true; }); } }, }; }, };
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
See Also: constructor-super, no-this-before-super
Code Path Examples Hello Worldconsole.log("Hello world!");
1
IfStatement
if (a) { foo(); } else { bar(); }
1
2
3
4
5
IfStatement
(chain)
if (a) { foo(); } else if (b) { bar(); } else if (c) { hoge(); }
1
2
3
4
5
6
7
SwitchStatement
switch (a) { case 0: foo(); break; case 1: case 2: bar(); case 3: hoge(); break; }
1
2
3
4
5
6
7
8
9
10
11
12
13
14
SwitchStatement
(has default
)
switch (a) { case 0: foo(); break; case 1: case 2: bar(); case 3: hoge(); break; default: fuga(); break; }
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
TryStatement
(try-catch)
try { foo(); if (a) { throw new Error(); } bar(); } catch (err) { hoge(err); } last();
1
2
3
4
5
6
7
8
9
10
It creates the paths from try
block to catch
block at:
throw
statements.try
block.try
block.TryStatement
(try-finally)
try { foo(); bar(); } finally { fuga(); } last();
1
2
3
4
5
6
7
If there is not catch
block, finally
block has two current segments. At this time when running the previous example to find unreachable nodes, currentSegments.length
is 2
. One is the normal path, and another is the leaving path (throw
or return
).
TryStatement
(try-catch-finally)
try { foo(); bar(); } catch (err) { hoge(err); } finally { fuga(); } last();
1
2
3
4
5
6
7
8
9
WhileStatement
while (a) { foo(); if (b) { continue; } bar(); }
1
2
3
4
5
6
7
DoWhileStatement
do { foo(); bar(); } while (a);
1
2
3
4
ForStatement
for (let i = 0; i < 10; ++i) { foo(); if (b) { break; } bar(); }
1
2
3
4
5
6
7
ForStatement
(for ever)
for (;;) { foo(); } bar();
1
2
3
4
ForInStatement
When there is a functionfor (let key in obj) { foo(key); }
1
2
3
function foo(a) { if (a) { return; } bar(); } foo(false);
1
2
3
4
5
6
7
8
It creates two code paths.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4