A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://en.wikipedia.org/wiki/Yesod_(web_framework) below:

Yesod (web framework) - Wikipedia

From Wikipedia, the free encyclopedia

Yesod (Hebrew pronunciation: [jeˈsod]; Hebrew: יְסוֺד, "Foundation") is a web framework based on the programming language Haskell for productive development of type-safe, representational state transfer (REST) model based (where uniform resource locators (URLs) identify resources, and Hypertext Transfer Protocol (HTTP) methods identify transitions), high performance web applications, developed by Michael Snoyman, et al. It is free and open-source software released under an MIT License.

Yesod is based on templates, to generate instances for listed entities, and dynamic content process functions, through Template Haskell constructs to host domain-specific language (eDSL) content templates called QuasiQuotes, where the content is translated into code expressions by metaprogramming instructions.[2]

There are also web-like language snippet templates that admit code expression interpolations, making them fully type-checked at compile time.[3]

Yesod divides its functions in separate libraries (database, html rendering, forms, etc.) so functions may used as needed.

Yesod uses the model–view–controller (MVC) software design pattern for its user interfaces.

Yesod uses a Web application interface (WAI),[4] a type of application programming interface (API), to isolate servlets, aka web apps., from servers, with handlers for the server protocols Common Gateway Interface (CGI),[5] FastCGI,[6] Simple Common Gateway Interface (SCGI),[7] Warp,[8] Launch (open as local URL to the default browser, closing the server when the window is closed),[9]

The foundation type[edit]

See ref.[10] Yesod requires a data type that instantiates the model–view–controller classes. This is called the foundation type. In the example below, it is named "MyApp".

The REST model identifies a web resource with a web path. Here, REST resources are given names with an R suffix (like "HomeR") and are listed in a parseRoutes site map description template. From this list, route names and dispatch handler names are derived.

Yesod makes use of Template Haskell metaprogramming to generate code from templates at compile time, assuring that the names in the templates match and everything typechecks (e.g. web resource names and handler names).

By inserting a mkYesod call, this will call Template Haskell primitives to generate the code[11] corresponding to the route type members, and the instances of the dispatch controller classes as to dispatch GET calls to route HomeR to a routine named composing them both as "getHomeR", expecting an existing handler that matches the name.

"Hello, World!" program example based on a Common Gateway Interface (CGI) server interface (the handler types have changed, but the philosophy remains):

{- file wai-cgi-hello.hs -}
{-# LANGUAGE PackageImports, TypeFamilies, QuasiQuotes, MultiParamTypeClasses,
             TemplateHaskell, OverloadedStrings #-}
import "wai" Network.Wai
import "wai-extra" Network.Wai.Handler.CGI (run) -- interchangeable WAI handler

import "yesod" Yesod
import "yesod-core" Yesod.Handler (getRequest)
import "text" Data.Text (Text)
import "shakespeare" Text.Cassius (Color(..), colorBlack)

-- the Foundation type
data MyApp = MyApp

-- sitemap template, listing path, resource name and methods accepted
-- `mkYesod` takes the foundation type name as param. for name composition of dispatch functions
mkYesod "MyApp" [parseRoutes|
/ HomeR GET
|]

instance Yesod MyApp

-- indentation structured CSS template
myStyle :: [Text]  CssUrl url
myStyle paramStyle =
        [cassius|
.box
    border: 1px solid #{boxColor}
|]
        where
          boxColor = case paramStyle of
                        ["high-contrast"]  colorBlack
                        _  Color 0 0 255

-- indentation structured HTML template
myHtml :: [(Text, Text)]  HtmlUrl url
myHtml params = [hamlet|
<!-- indentation, or lack of it, under starting tags or commands ('$' prefix) 
     describe the content or sequence tree structure -->
<!-- '.' or '#' prefixes in tags introduce css styled "class" or "id" attribute values -->
<!-- interpolation of haskell expressions follow the "shakespeare templates" #{expr} syntax -->

<p>Hello World! There are <span .box>#{length params} parameters</span>:
$if null params
    <p>Nothing to list 
$else
    <ul>
         $forall param <- params
             <li>#{fst param}: #{snd param}
|]
getHomeR :: Handler RepHtml
getHomeR = do
        req <- getRequest
        let params = reqGetParams req
        paramStyle <- lookupGetParams "style"
        
        defaultLayout $ do
            -- adding widgets to the Widget monad (a ''Writer'' monad)
            setTitle "Yesod example"
            toWidgetHead $ myStyle paramStyle
            toWidgetBody $ myHtml params

-- there are ''run'' function variants for different WAI handlers

main = toWaiApp MyApp >>= run
# cgi test
export REMOTE_ADDR=127.0.0.1
export REQUEST_METHOD=GET
export PATH_INFO=/
export QUERY_STRING='p1=abc;p2=def;style=high-contrast'
./wai-cgi-hello

[10]

Resources, routes, HTTP method handlers[edit]

See ref.[12][13] Yesod follows the representational state transfer model of access to web documents, identifying docs. and directories as resources with a Route constructor, named with an uppercase R suffix (for example, HomeR).

The routes table
The parseRoutes template should list the resources specifying route pieces, resource name and dispatch methods to be accepted.

URL segment capture as parameter is possible specifying a '#' prefix for single segment capture or '*' for multisegment capture, followed by the parameter type.

-- given a MyApp foundation type

mkYesod "MyApp" [parseRoutes|
/                     HomeR      -- no http methods stated: all methods accepted
/blog                 BlogR      GET POST

-- the '#' prefix specify the path segment as a route handler parameter
/article/#ArticleId   ArticleR   GET PUT

-- the '*' prefix specify the parameter as a sequence of path pieces
/branch/*Texts        BranchR    GET

-- to simplify the grammar, compound types must use an alias, eg. type Texts for ''[Text]''
|]
data Route MyApp = 
    HomeR                    -- referenced in templates as: @{HomeR}
    | BlogR                  -- in templates: @{BlogR}
    | ArticleR ArticleId     -- in templates: @{ArticleR myArticleId}
    | BranchR Texts          -- in templates: @{BranchR myBranchSegments}
-- for "/ HomeR"        -- no http methods stated ⇒ only one handler with prefix ''handler''
handlerHomeR :: HasReps t  Handler t

-- for "/blog BlogR GET POST"
getBlogR :: HasReps t  Handler t
postBlogR :: HasReps t  Handler t

-- for "/article/#ArticleId ArticleR GET PUT"
getArticleR :: HasReps t  ArticleId  Handler t
putArticleR :: HasReps t  ArticleId  Handler t

See ref.[12]

Authentication, authorization[edit]

See ref.[14] Authentication plugins: OpenID, BrowserID, Email, GoogleEmail, HashDB, RpxNow.[15]

There is an important setting for automatic redirection after authentication.[16]

See ref.[17] Session back-ends: ClientSession[18] (it stores the session in a cookie), ServerSession[19][20] (it stores most of the session data at the server)

>> To avoid undue bandwidth overhead, production sites can serve their static content from a separate domain name to avoid the overhead of transmitting the session cookie for each request

A success, failure or indicative message can be stored (setMessage) in the Session and will be shown, if it exists, by the default_layout routine through the default_layout.hamlet template, being cleared on consultation.[21]

Common URL prefix subsites for workflows, file serving or site partitioning. See ref.[22][23]

Built-in subsites: Static,[24][25] Auth[26]

Form processing, layout generation[edit]

See ref.[27]

The Form type here is an object that is used in the controller to parse and process the form fields user input and produce a (FormResult, Widget) pair were the widget holds the layout of the next rendering of the form with error messages and marks. It can also be used to generate a new form with blanks or default values.

The form type takes the shape of a function of an html snippet to be embedded in the view, that will hold security purpose hidden fields.

A form object is generated from an ApplicativeMonadic composition of fields for a combined, sequential parsing of field inputs.

There are three types of forms:

The field generators, whose names are composed by the form type initial (a|m|i) followed by (req|opt){- required or optional -}, have a fieldParse component and a fieldView one.[28]

The actual function parameters and types have changed through Yesod versions. Check the Yesod book and libraries signatures.

The magic is in the FormResult data type Applicative instance, where (<*>) collects the error messages for the case of FormFailure [textErrMsg] result values[30]

Monadic forms permit free form layout and better treatment of hiddenField members.[27]

A sample of an Applicative[31] form:

-- a record for our form fields
data Person = Person {personName :: Text, personAge :: Int, personLikings :: Maybe Text}

-- the Form type has an extra parameter for an html snippet to be embedded, containing a CSRF token hidden field for security
type Form sub master x = Html  MForm sub master (FormResult x, Widget)

{-
-- for messages in validation functions:
  @param master: yesod instance to use in renderMessage (return from handler's getYesod)
  @param languages: page languages to use in renderMessage

-- optional defaults record:
  @param mbPersonDefaults: Just defaults_record, or Nothing for blank form
-}

personForm :: MyFoundationType  [Text]  Maybe Person  Form sub master Person
{- ''aopt'' (optional field AForm component) for "Maybe" fields,
   ''areq'' (required fld AForm comp.) will insert the "required" attribute
-}
personForm master languages mbPersonDefaults = renderTable $ 
  Person <$> areq textField            fldSettingsName    mbNameDefault 
         <*> areq customPersonAgeField fldSettingsAge     mbAgeDefault 
         <*> aopt textareaField        fldSettingsLikings mbLikingsDefault 
  where
    mbNameDefault    = fmap personName    mbPersonDefaults
    mbAgeDefault     = fmap personAge     mbPersonDefaults
    mbLikingsDefault = fmap personLikings mbPersonDefaults

    -- "fieldSettingsLabel" returns an initial fieldSettings record
    -- recently the "FieldSettings" record can be defined from a String label since it implements IsString
    fldSettingsName = (fieldSettingsLabel MsgName) {fsAttrs = [("maxlength","20")]}
    fldSettingsAge = fieldSettingsLabel MsgAge
    fldSettingsLikings = (fieldSettingsLabel MsgLikings) {fsAttrs = [("cols","40"),("rows","10")]}

    customPersonAgeField = check validateAge intField

    validateAge y
        | y < 18    = Left $ renderMessage master languages MsgUnderAge
        | otherwise = Right y

The types shown correspond to an older version, but the philosophy remains.

The Handler monad returns content in one or more of several formats as components of types that implement the HasReps class[32] {RepHtml, RepJson, RepXml, RepPlain, the dual RepHtmlJson, a pair or list of pairs [(ContentType, Content)], ..}.[33][34] Json examples:[35][36][37]

The HasReps default implementation of chooseRep chooses the document representation to be returned according to the preferred content-type list of the client accept header.[32]

A Widget monad,[39] based on a Writer[40] one and argument to defaultLayout, facilitate to piece the widgets together.

Indentation based templates for tree structured markup[edit]

'$' prefixes lines of logic statements.

Automatic closing tags are generated only for the tag at line start position.

toWidget [hamlet|
$doctype 5
<html>
    <!-- only the tag at the beginning of the line will be automatically closed -->
    <!-- '.' or '#' prefixes in tags introduce class/id names, à la CSS -->
    <!-- ":boolVar:" prefix in attributes makes them conditionally generated -->
    <!-- interpolation of haskell expressions follow the "shakespearean templates"
         syntax introduced in the so named section -->

    <head>
        <title>#{pageTitle} - My Site
        <link rel=stylesheet href=@{Stylesheet_route}>
    <body>
        <header>
           ^{headerTemplate}
        <section #mySectionId>
          <p><span .titleClass>_{MsgArticleListTitle}</span>
          $if null articles
            <p :isRed:style="color:red">_{MsgSorryNoArticles}
          $else
            <ul>
                $forall art <- articles
                    <li>#{articleNumber art} .- #{articleTitle art}
        <footer>
          ^{footerTemplate}
|]
Template interpolation - Shakespearean templates[edit]

See ref.[42] These are content view templates that follow a common substitution pattern of code expressions within curly brackets with different character prefix to refer to

template expressions with ^{...}
refers to other templates of the same type, with given parameters as ^{template params},
route expressions with @{...}
safe (typed) urls as @{HomeR},
message expressions with _{...}
i18n message rendering as _{MsgMessageLabel params}
other Haskell expressions with #{...}
haskell expression rendering as #{haskell_expression} which type must be convertible

Using non-English text in expressions requires use of the Unicode-aware type Text, since the Glasgow Haskell Compiler's (GHC's) show for the type String renders non-ASCII characters as escaped numerical codes.

External file templates
for JavaScript, CoffeeScript, Roy
the julius quasiquoter: introduces a JavaScript template.[51] JavaScript variants CoffeeScript and Roy-language[52] have also specific quasiquoters.[2][51]
for CSS
TypeScript and JSX templates
the tsc and tscJSX quasiquoters. Only on UNIX derivatives (no Windows by now).[55]
text/plain templates
for e-mail or text/plain http content type.[56]
  1. templates: lt: lazy text, st: strict text
  2. templates for text with a left margin delimiter '|': lbt (lazy), sbt (strict)
Localizable messages[edit]

See ref.[57]

Yesod app messages are localizable (i18n). They should be held within the messages folder, in files named based on ISO, as <iso-language>.msg

Message entries follow the EBNF pattern:

-- EBNF: identifier, {' ', parameter, '@', type}, ":", text with interpolations
ArticleUnexistent param@Int64 : unexistent article #{param}
-- in code
myMsg :: MyAppMessage  -- datatype appending "Message" to the foundation type
myMsg = MsgArticleUnexistent myArticleId  -- constructor prepending "Msg" to the msg. label

-- in widget templates
  _{MsgArticleUnexistent myArticleId}

Actual i18n support is missing from the stack app template. The mkMessage "MyApp" messagesFolder isoLangDefault must be added to the "Foundation.hs" file to get the messages instantiated.[58]

Search engine XML Sitemap[edit] Using in-memory mutable data (in the foundation datatype)[edit]

E.g. a visitor count. See ref.[62]

The Database layer[edit]

There is first class support for PostgreSQL, SQLite, MongoDB, CouchDB and MySQL, with experimental support for Redis.[63]

The Database layout is described in a template listing the entities, fields and constraints.[66]

automatic table creation, schema update and table migration
Modifications of the entities template produces an schema update with automatic table creation, and migration for the DBMS's that support "ALTER TABLE" SQL commands in a migrateAll procedure, generated from the template content. See "Migrations" in ref.[63] to look for migration aware DBMS.
share [mkPersist sqlSettings,
       mkMigrate "migrateAll"   -- generates the migration procedure with the specified name
       ] [persist|

User   -- table name and entity record type
    -- implicit autoincrement column "id" as primary key, typed UserId
    ident Text             -- refers to db. table column "ident"; 
                     -- generates a record field prefixing the table name as  "userIdent"
    password Text Maybe         -- Maybe indicates Nullable field
    UniqueUser ident            -- unique constraint with space sep. field sequence

Email  -- table name and entity record type
    -- implicit autoincrement column "id" as primary key, typed EmailId
    email Text
    user UserId                 -- foreign key by specifying other tables EntityField types
    verkey Text Maybe

    newlyAddedColumn Text "default='sometext'::character varying"  -- sql level Default constraint

    UniqueEmail email     -- unique constraint
|]

Example for persistent rawSQL and Esqueleto queries.[71]

The following packages are part of the yesod-platform:[72]

New Yesod apps are generated from the HaskellStack tool[76] templates, replacing previous command "yesod init"

Stack based app. template names are prefixed by yesod as "yesod-{minimal | postgres | sqlite | mysql | mongo | ...}"

The "Yesod helper" tool[edit] Deploying with Keter: A web app server monitor and reverse proxy server[edit]

See refs.[78][79] [80]

Keter is a process as a service that handles deployment and restart of Yesod web app servers, and, per web app, database creation for PostgreSQL.

The console command yesod keter packs the web app. as a keter bundle for uploading to a keter folder named "incoming".

Keter monitors the "incoming" folder and unpacks the app. to a temporary one, then assigns the web app a port to listen to, and starts it.

Initially it worked with Nginx as reverse proxy (keter version 0.1*), adding virtual server entries to its configuration and making Nginx reload it, but now Keter itself provides its own reverse proxy functionality, removing Nginx dependency and acting as the main web server.[81]

Old documentation (Nginx based).[82][83]

Integration with JavaScript generated from functional languages[edit]

See ref.[84][85][86]

At Linux distributions[edit]

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4