From Wikipedia, the free encyclopedia
Archimedean solid with 14 faces
Truncated cubeIn geometry, the truncated cube, or truncated hexahedron, is an Archimedean solid. It has 14 regular faces (6 octagonal and 8 triangular), 36 edges, and 24 vertices.
If the truncated cube has unit edge length, its dual triakis octahedron has edges of lengths 2 and δS +1, where δS is the silver ratio, √2 +1.
The area A and the volume V of a truncated cube of edge length a are:
The truncated cube has five special orthogonal projections, centered, on a vertex, on two types of edges, and two types of faces: triangles, and octagons. The last two correspond to the B2 and A2 Coxeter planes.
The truncated cube can also be represented as a spherical tiling, and projected onto the plane via a stereographic projection. This projection is conformal, preserving angles but not areas or lengths. Straight lines on the sphere are projected as circular arcs on the plane.
Cartesian coordinates[edit] A truncated cube with its octagonal faces pyritohedrally dissected with a central vertex into triangles and pentagons, creating a topological icosidodecahedronCartesian coordinates for the vertices of a truncated hexahedron centered at the origin with edge length 21/δS are all the permutations of
where δS=√2+1.
If we let a parameter ξ= 1/δS, in the case of a Regular Truncated Cube, then the parameter ξ can be varied between ±1. A value of 1 produces a cube, 0 produces a cuboctahedron, and negative values produces self-intersecting octagrammic faces.
If the self-intersected portions of the octagrams are removed, leaving squares, and truncating the triangles into hexagons, truncated octahedra are produced, and the sequence ends with the central squares being reduced to a point, and creating an octahedron.
Dissected truncated cube, with elements expanded apartThe truncated cube can be dissected into a central cube, with six square cupolae around each of the cube's faces, and 8 regular tetrahedra in the corners. This dissection can also be seen within the runcic cubic honeycomb, with cube, tetrahedron, and rhombicuboctahedron cells.
This dissection can be used to create a Stewart toroid with all regular faces by removing two square cupolae and the central cube. This excavated cube has 16 triangles, 12 squares, and 4 octagons.[1][2]
It shares the vertex arrangement with three nonconvex uniform polyhedra:
The truncated cube is related to other polyhedra and tilings in symmetry.
The truncated cube is one of a family of uniform polyhedra related to the cube and regular octahedron.
Uniform octahedral polyhedra Symmetry: [4,3], (*432) [4,3]+This polyhedron is topologically related as a part of sequence of uniform truncated polyhedra with vertex configurations (3.2n.2n), and [n,3] Coxeter group symmetry, and a series of polyhedra and tilings n.8.8.
*n32 symmetry mutation of truncated spherical tilings: t{n,3} SymmetryTetrahedron, its edge truncation, and the truncated cube
Truncating alternating vertices of the cube gives the chamfered tetrahedron, i.e. the edge truncation of the tetrahedron.
The truncated triangular trapezohedron is another polyhedron which can be formed from cube edge truncation.
The truncated cube, is second in a sequence of truncated hypercubes:
Truncated hypercubes Image ... Name Octagon Truncated cube Truncated tesseract Truncated 5-cube Truncated 6-cube Truncated 7-cube Truncated 8-cube Coxeter diagram Vertex figure ( )v( )In the mathematical field of graph theory, a truncated cubical graph is the graph of vertices and edges of the truncated cube, one of the Archimedean solids. It has 24 vertices and 36 edges, and is a cubic Archimedean graph.[3]
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4