A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://en.wikipedia.org/wiki/Scorer's_function below:

Scorer's function - Wikipedia

From Wikipedia, the free encyclopedia

Graph of G i ( x ) {\displaystyle \mathrm {Gi} (x)} and H i ( x ) {\displaystyle \mathrm {Hi} (x)}

In mathematics, the Scorer's functions are special functions studied by Scorer (1950) and denoted Gi(x) and Hi(x).

Hi(x) and -Gi(x) solve the equation

y ″ ( x ) − x   y ( x ) = 1 π {\displaystyle y''(x)-x\ y(x)={\frac {1}{\pi }}}

and are given by

G i ( x ) = 1 π ∫ 0 ∞ sin ⁡ ( t 3 3 + x t ) d t , {\displaystyle \mathrm {Gi} (x)={\frac {1}{\pi }}\int _{0}^{\infty }\sin \left({\frac {t^{3}}{3}}+xt\right)\,dt,}
H i ( x ) = 1 π ∫ 0 ∞ exp ⁡ ( − t 3 3 + x t ) d t . {\displaystyle \mathrm {Hi} (x)={\frac {1}{\pi }}\int _{0}^{\infty }\exp \left(-{\frac {t^{3}}{3}}+xt\right)\,dt.}

The Scorer's functions can also be defined in terms of Airy functions:

G i ( x ) = B i ( x ) ∫ x ∞ A i ( t ) d t + A i ( x ) ∫ 0 x B i ( t ) d t , H i ( x ) = B i ( x ) ∫ − ∞ x A i ( t ) d t − A i ( x ) ∫ − ∞ x B i ( t ) d t . {\displaystyle {\begin{aligned}\mathrm {Gi} (x)&{}=\mathrm {Bi} (x)\int _{x}^{\infty }\mathrm {Ai} (t)\,dt+\mathrm {Ai} (x)\int _{0}^{x}\mathrm {Bi} (t)\,dt,\\\mathrm {Hi} (x)&{}=\mathrm {Bi} (x)\int _{-\infty }^{x}\mathrm {Ai} (t)\,dt-\mathrm {Ai} (x)\int _{-\infty }^{x}\mathrm {Bi} (t)\,dt.\end{aligned}}}

It can also be seen, just from the integral forms, that the following relationship holds:

G i ( x ) + H i ( x ) ≡ B i ( x ) {\displaystyle \mathrm {Gi} (x)+\mathrm {Hi} (x)\equiv \mathrm {Bi} (x)}

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4