From Wikipedia, the free encyclopedia
Function space of all functions whose derivatives are rapidly decreasing
In mathematics, Schwartz space S {\displaystyle {\mathcal {S}}} is the function space of all functions whose derivatives are rapidly decreasing. This space has the important property that the Fourier transform is an automorphism on this space. This property enables one, by duality, to define the Fourier transform for elements in the dual space S ∗ {\displaystyle {\mathcal {S}}^{*}} of S {\displaystyle {\mathcal {S}}} , that is, for tempered distributions. A function in the Schwartz space is sometimes called a Schwartz function.
A two-dimensional Gaussian function is an example of a rapidly decreasing function.Schwartz space is named after French mathematician Laurent Schwartz.
Let N {\displaystyle \mathbb {N} } be the set of non-negative integers, and for any n ∈ N {\displaystyle n\in \mathbb {N} } , let N n := N × ⋯ × N ⏟ n times {\displaystyle \mathbb {N} ^{n}:=\underbrace {\mathbb {N} \times \dots \times \mathbb {N} } _{n{\text{ times}}}} be the n-fold Cartesian product.
The Schwartz space or space of rapidly decreasing functions on R n {\displaystyle \mathbb {R} ^{n}} is the function space S ( R n , C ) := { f ∈ C ∞ ( R n , C ) ∣ ∀ α , β ∈ N n , ‖ f ‖ α , β < ∞ } , {\displaystyle {\mathcal {S}}\left(\mathbb {R} ^{n},\mathbb {C} \right):=\left\{f\in C^{\infty }(\mathbb {R} ^{n},\mathbb {C} )\mid \forall {\boldsymbol {\alpha }},{\boldsymbol {\beta }}\in \mathbb {N} ^{n},\|f\|_{{\boldsymbol {\alpha }},{\boldsymbol {\beta }}}<\infty \right\},} where C ∞ ( R n , C ) {\displaystyle C^{\infty }(\mathbb {R} ^{n},\mathbb {C} )} is the function space of smooth functions from R n {\displaystyle \mathbb {R} ^{n}} into C {\displaystyle \mathbb {C} } , and ‖ f ‖ α , β := sup x ∈ R n | x α ( D β f ) ( x ) | . {\displaystyle \|f\|_{{\boldsymbol {\alpha }},{\boldsymbol {\beta }}}:=\sup _{{\boldsymbol {x}}\in \mathbb {R} ^{n}}\left|{\boldsymbol {x}}^{\boldsymbol {\alpha }}({\boldsymbol {D}}^{\boldsymbol {\beta }}f)({\boldsymbol {x}})\right|.} Here, sup {\displaystyle \sup } denotes the supremum, and we used multi-index notation, i.e. x α := x 1 α 1 x 2 α 2 … x n α n {\displaystyle {\boldsymbol {x}}^{\boldsymbol {\alpha }}:=x_{1}^{\alpha _{1}}x_{2}^{\alpha _{2}}\ldots x_{n}^{\alpha _{n}}} and D β := ∂ 1 β 1 ∂ 2 β 2 … ∂ n β n {\displaystyle D^{\boldsymbol {\beta }}:=\partial _{1}^{\beta _{1}}\partial _{2}^{\beta _{2}}\ldots \partial _{n}^{\beta _{n}}} .
To put common language to this definition, one could consider a rapidly decreasing function as essentially a function f {\displaystyle f} such that f ( x ) , f ′ ( x ) , f ′ ′ ( x ) , … {\displaystyle f(x),f'(x),f^{\prime \prime }(x),\ldots } , all exist everywhere on R {\displaystyle \mathbb {R} } and go to zero as x → ± ∞ {\displaystyle x\rightarrow \pm \infty } faster than any reciprocal power of x {\displaystyle x} . In particular, S ( R n , C ) {\displaystyle {\mathcal {S}}\left(\mathbb {R} ^{n},\mathbb {C} \right)} is a subspace of C ∞ ( R n , C ) {\displaystyle C^{\infty }(\mathbb {R} ^{n},\mathbb {C} )} .
Examples of functions in the Schwartz space[edit] Analytic properties[edit]f , g ∈ S ( R n ) ⇒ f g ∈ S ( R n ) {\displaystyle f,g\in {\mathcal {S}}\left(\mathbb {R} ^{n}\right)\Rightarrow fg\in {\mathcal {S}}\left(\mathbb {R} ^{n}\right)} In particular, this implies that S ( R n ) {\displaystyle {\mathcal {S}}\left(\mathbb {R} ^{n}\right)} is an R {\displaystyle \mathbb {R} } -algebra. More generally, if f ∈ S ( R ) {\displaystyle f\in {\mathcal {S}}\left(\mathbb {R} \right)} and H {\displaystyle H} is a bounded smooth function with bounded derivatives of all orders, then f H ∈ S ( R ) {\displaystyle fH\in {\mathcal {S}}\left(\mathbb {R} \right)} .
This article incorporates material from Space of rapidly decreasing functions on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4