Showing content from https://en.wikipedia.org/wiki/Loss_of_load below:
Loss of load - Wikipedia
From Wikipedia, the free encyclopedia
Term for when the available generation capacity in an electrical grid is less than the system load
Loss of load in an electrical grid is a term used to describe the situation when the available generation capacity is less than the system load. Multiple probabilistic reliability indices for the generation systems are using loss of load in their definitions, with the more popular being Loss of Load Probability (LOLP) that characterizes a probability of a loss of load occurring within a year. Loss of load events are calculated before the mitigating actions (purchasing electricity from other systems, load shedding) are taken, so a loss of load does not necessarily cause a blackout.
Loss-of-load-based reliability indices[edit]
Multiple reliability indices for the electrical generation are based on the loss of load being observed/calculated over a long interval (one or multiple years) in relatively small increments (an hour or a day). The total number of increments inside the long interval is designated as N {\displaystyle N} (e.g., for a yearlong interval N = 365 {\displaystyle N=365} if the increment is a day, N = 8760 {\displaystyle N=8760} if the increment is an hour):
One-day-in-ten-years criterion[edit]
A typically accepted design goal for L O L E {\displaystyle LOLE} is 0.1 day per year ("one-day-in-ten-years criterion" a.k.a. "1 in 10"), corresponding to L O L P = 1 10 ⋅ 365 ≈ 0.000274 {\displaystyle {LOLP}={\frac {1}{10\cdot 365}}\approx 0.000274} . In the US, the threshold is set by the regional entities, like Northeast Power Coordinating Council:
resources will be planned in such a manner that ... the probability of disconnecting non-interruptible customers will be no more than once in ten years
- "Loss of Load Probability: Application to Montana" (PDF). Ascend Analytics. 2019. Archived from the original (PDF) on 25 Jun 2021.
- David Elmakias, ed. (7 July 2008). New Computational Methods in Power System Reliability. Springer Science & Business Media. p. 174. ISBN 978-3-540-77810-3. OCLC 1050955963.
- Arteconi, Alessia; Bruninx, Kenneth (7 February 2018). "Energy Reliability and Management". Comprehensive Energy Systems. Vol. 5. Elsevier. p. 140. ISBN 978-0-12-814925-6. OCLC 1027476919.
- Meier, Alexandra von (30 June 2006). Electric Power Systems: A Conceptual Introduction. John Wiley & Sons. p. 230. ISBN 978-0-470-03640-2. OCLC 1039149555.
- Wang, Xi-Fan; Song, Yonghua; Irving, Malcolm (7 June 2010). Modern Power Systems Analysis. Springer Science & Business Media. p. 151. ISBN 978-0-387-72853-7. OCLC 1012499302.
- Ela, Erik; Milligan, Michael; Bloom, Aaron; Botterud, Audun; Townsend, Aaron; Levin, Todd (2018). "Long-Term Resource Adequacy, Long-Term Flexibility Requirements, and Revenue Sufficiency". Studies in Systems, Decision and Control. Vol. 144. Springer International Publishing. pp. 129–164. doi:10.1007/978-3-319-74263-2_6. eISSN 2198-4190. ISBN 978-3-319-74261-8. ISSN 2198-4182.
- "Probabilistic Adequacy and Measures: Technical Reference Report" (PDF). NERC. February 2018. p. 13.
- Ibanez, Eduardo; Milligan, Michael (July 2014), "Comparing resource adequacy metrics and their influence on capacity value" (PDF), 2014 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS), IEEE, pp. 1–6, doi:10.1109/PMAPS.2014.6960610, ISBN 978-1-4799-3561-1, OSTI 1127287, S2CID 3135204
- Billinton, Roy; Huang, Dange (June 2006), "Basic Concepts in Generating Capacity Adequacy Evaluation", 2006 International Conference on Probabilistic Methods Applied to Power Systems, IEEE, pp. 1–6, doi:10.1109/PMAPS.2006.360431, ISBN 978-91-7178-585-5, S2CID 25841586
- Tezak, Christine (June 24, 2005). Resource Adequacy - Alphabet Soup! (PDF). Stanford Washington Research Group.
- Duarte, Yorlandys Salgado; Serpa, Alfredo del Castillo (2016). "Assessment of the Reliability of Electrical Power Systems". In Antônio José da Silva Neto; Orestes Llanes Santiago; Geraldo Nunes Silva (eds.). Mathematical Modeling and Computational Intelligence in Engineering Applications. Springer. doi:10.1007/978-3-319-38869-4_11. ISBN 978-3-319-38868-7.
RetroSearch is an open source project built by @garambo
| Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4