From Wikipedia, the free encyclopedia
Probability distribution
Log-Laplace distributionProbability density function
Probability density functions for Log-Laplace distributions with varying parameters
μ {\displaystyle \mu }and
b {\displaystyle b}.
Cumulative distribution function
Cumulative distribution functions for Log-Laplace distributions with varying parameters
μ {\displaystyle \mu }and
b {\displaystyle b}.
In probability theory and statistics, the log-Laplace distribution is the probability distribution of a random variable whose logarithm has a Laplace distribution. If X has a Laplace distribution with parameters μ and b, then Y = eX has a log-Laplace distribution. The distributional properties can be derived from the Laplace distribution.
A random variable has a log-Laplace(μ, b) distribution if its probability density function is:[1]
The cumulative distribution function for Y when y > 0, is
Versions of the log-Laplace distribution based on an asymmetric Laplace distribution also exist.[2] Depending on the parameters, including asymmetry, the log-Laplace may or may not have a finite mean and a finite variance.[2]
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4