A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://en.wikipedia.org/wiki/Lexicographic_product_of_graphs below:

Lexicographic product of graphs - Wikipedia

From Wikipedia, the free encyclopedia

Graph in graph theory

The lexicographic product of graphs.

In graph theory, the lexicographic product or (graph) composition GH of graphs G and H is a graph such that

If the edge relations of the two graphs are order relations, then the edge relation of their lexicographic product is the corresponding lexicographic order.

The lexicographic product was first studied by Felix Hausdorff (1914). As Feigenbaum & Schäffer (1986) showed, the problem of recognizing whether a graph is a lexicographic product is equivalent in complexity to the graph isomorphism problem.

The lexicographic product is in general noncommutative: GHHG. However it satisfies a distributive law with respect to disjoint union: (A + B) ∙ C = AC + BC. In addition it satisfies an identity with respect to complementation: C(GH) = C(G) ∙ C(H). In particular, the lexicographic product of two self-complementary graphs is self-complementary.

The independence number of a lexicographic product may be easily calculated from that of its factors:

α(GH) = α(G)α(H).

The clique number of a lexicographic product is as well multiplicative:

ω(GH) = ω(G)ω(H).

The chromatic number of a lexicographic product is equal to the b-fold chromatic number of G, for b equal to the chromatic number of H:

χ(GH) = χb(G), where b = χ(H).

The lexicographic product of two graphs is a perfect graph if and only if both factors are perfect.


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4