From Wikipedia, the free encyclopedia
Category theory
In category theory, a Kleisli category is a category naturally associated to any monad T. It is equivalent to the category of free T-algebras. The Kleisli category is one of two extremal solutions to the question: "Does every monad arise from an adjunction?" The other extremal solution is the Eilenberg–Moore category. Kleisli categories are named for the mathematician Heinrich Kleisli.
Let ⟨T, η, μ⟩ be a monad over a category C. The Kleisli category of C is the category CT whose objects and morphisms are given by
That is, every morphism f: X → T Y in C (with codomain TY) can also be regarded as a morphism in CT (but with codomain Y). Composition of morphisms in CT is given by
where f: X → T Y and g: Y → T Z. The identity morphism is given by the monad unit η:
An alternative way of writing this, which clarifies the category in which each object lives, is used by Mac Lane.[1] We use very slightly different notation for this presentation. Given the same monad and category C {\displaystyle C} as above, we associate with each object X {\displaystyle X} in C {\displaystyle C} a new object X T {\displaystyle X_{T}} , and for each morphism f : X → T Y {\displaystyle f\colon X\to TY} in C {\displaystyle C} a morphism f ∗ : X T → Y T {\displaystyle f^{*}\colon X_{T}\to Y_{T}} . Together, these objects and morphisms form our category C T {\displaystyle C_{T}} , where we define composition, also called Kleisli composition, by
Then the identity morphism in C T {\displaystyle C_{T}} , the Kleisli identity, is
Composition of Kleisli arrows can be expressed succinctly by means of the extension operator (–)# : Hom(X, TY) → Hom(TX, TY). Given a monad ⟨T, η, μ⟩ over a category C and a morphism f : X → TY let
Composition in the Kleisli category CT can then be written
The extension operator satisfies the identities:
where f : X → TY and g : Y → TZ. It follows trivially from these properties that Kleisli composition is associative and that ηX is the identity.
In fact, to give a monad is to give a Kleisli triple ⟨T, η, (–)#⟩, i.e.
such that the above three equations for extension operators are satisfied.
Kleisli adjunction[edit]Kleisli categories were originally defined in order to show that every monad arises from an adjunction. That construction is as follows.
Let ⟨T, η, μ⟩ be a monad over a category C and let CT be the associated Kleisli category. Using Mac Lane's notation mentioned in the “Formal definition” section above, define a functor F: C → CT by
and a functor G : CT → C by
One can show that F and G are indeed functors and that F is left adjoint to G. The counit of the adjunction is given by
Finally, one can show that T = GF and μ = GεF so that ⟨T, η, μ⟩ is the monad associated to the adjunction ⟨F, G, η, ε⟩.
Showing that GF = T[edit]For any object X in category C:
For any f : X → Y {\displaystyle f:X\to Y} in category C:
Since ( G ∘ F ) ( X ) = T X {\displaystyle (G\circ F)(X)=TX} is true for any object X in C and ( G ∘ F ) ( f ) = T f {\displaystyle (G\circ F)(f)=Tf} is true for any morphism f in C, then G ∘ F = T {\displaystyle G\circ F=T} . Q.E.D.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4