A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://en.wikipedia.org/wiki/Hosohedron below:

Hosohedron - Wikipedia

From Wikipedia, the free encyclopedia

Spherical polyhedron composed of lunes

This beach ball would be a hosohedron with 6 spherical lune faces, if the 2 white caps on the ends were removed and the lunes extended to meet at the poles.

In spherical geometry, an n-gonal hosohedron is a tessellation of lunes on a spherical surface, such that each lune shares the same two polar opposite vertices.

A regular n-gonal hosohedron has Schläfli symbol {2,n}, with each spherical lune having internal angle 2π/nradians (360/n degrees).[1][2]

Hosohedra as regular polyhedra[edit]

For a regular polyhedron whose Schläfli symbol is {mn}, the number of polygonal faces is :

N 2 = 4 n 2 m + 2 n − m n . {\displaystyle N_{2}={\frac {4n}{2m+2n-mn}}.}

The Platonic solids known to antiquity are the only integer solutions for m ≥ 3 and n ≥ 3. The restriction m ≥ 3 enforces that the polygonal faces must have at least three sides.

When considering polyhedra as a spherical tiling, this restriction may be relaxed, since digons (2-gons) can be represented as spherical lunes, having non-zero area.

Allowing m = 2 makes

N 2 = 4 n 2 × 2 + 2 n − 2 n = n , {\displaystyle N_{2}={\frac {4n}{2\times 2+2n-2n}}=n,}

and admits a new infinite class of regular polyhedra, which are the hosohedra. On a spherical surface, the polyhedron {2, n} is represented as n abutting lunes, with interior angles of 2π/n. All these spherical lunes share two common vertices.

Kaleidoscopic symmetry[edit]

The 2 n {\displaystyle 2n} digonal spherical lune faces of a 2 n {\displaystyle 2n} -hosohedron, { 2 , 2 n } {\displaystyle \{2,2n\}} , represent the fundamental domains of dihedral symmetry in three dimensions: the cyclic symmetry C n v {\displaystyle C_{nv}} , [ n ] {\displaystyle [n]} , ( ∗ n n ) {\displaystyle (*nn)} , order 2 n {\displaystyle 2n} . The reflection domains can be shown by alternately colored lunes as mirror images.

Bisecting each lune into two spherical triangles creates an n {\displaystyle n} -gonal bipyramid, which represents the dihedral symmetry D n h {\displaystyle D_{nh}} , order 4 n {\displaystyle 4n} .

Different representations of the kaleidoscopic symmetry of certain small hosohedra Symmetry (order 2 n {\displaystyle 2n} ) Schönflies notation C n v {\displaystyle C_{nv}} C 1 v {\displaystyle C_{1v}} C 2 v {\displaystyle C_{2v}} C 3 v {\displaystyle C_{3v}} C 4 v {\displaystyle C_{4v}} C 5 v {\displaystyle C_{5v}} C 6 v {\displaystyle C_{6v}} Orbifold notation ( ∗ n n ) {\displaystyle (*nn)} ( ∗ 11 ) {\displaystyle (*11)} ( ∗ 22 ) {\displaystyle (*22)} ( ∗ 33 ) {\displaystyle (*33)} ( ∗ 44 ) {\displaystyle (*44)} ( ∗ 55 ) {\displaystyle (*55)} ( ∗ 66 ) {\displaystyle (*66)} Coxeter diagram [ n ] {\displaystyle [n]} [ ] {\displaystyle [\,\,]} [ 2 ] {\displaystyle [2]} [ 3 ] {\displaystyle [3]} [ 4 ] {\displaystyle [4]} [ 5 ] {\displaystyle [5]} [ 6 ] {\displaystyle [6]} 2 n {\displaystyle 2n} -gonal hosohedron Schläfli symbol { 2 , 2 n } {\displaystyle \{2,2n\}} { 2 , 2 } {\displaystyle \{2,2\}} { 2 , 4 } {\displaystyle \{2,4\}} { 2 , 6 } {\displaystyle \{2,6\}} { 2 , 8 } {\displaystyle \{2,8\}} { 2 , 10 } {\displaystyle \{2,10\}} { 2 , 12 } {\displaystyle \{2,12\}} Alternately colored fundamental domains Relationship with the Steinmetz solid[edit]

The tetragonal hosohedron is topologically equivalent to the bicylinder Steinmetz solid, the intersection of two cylinders at right-angles.[3]

Derivative polyhedra[edit]

The dual of the n-gonal hosohedron {2, n} is the n-gonal dihedron, {n, 2}. The polyhedron {2,2} is self-dual, and is both a hosohedron and a dihedron.

A hosohedron may be modified in the same manner as the other polyhedra to produce a truncated variation. The truncated n-gonal hosohedron is the n-gonal prism.

Apeirogonal hosohedron[edit]

In the limit, the hosohedron becomes an apeirogonal hosohedron as a 2-dimensional tessellation:

Multidimensional analogues in general are called hosotopes. A regular hosotope with Schläfli symbol {2,p,...,q} has two vertices, each with a vertex figure {p,...,q}.

The two-dimensional hosotope, {2}, is a digon.

The term “hosohedron” appears to derive from the Greek ὅσος (hosos) “as many”, the idea being that a hosohedron can have “as many faces as desired”.[4] It was introduced by Vito Caravelli in the eighteenth century.[5]

Wikimedia Commons has media related to

Hosohedra

.


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4