From Wikipedia, the free encyclopedia
Abstract regular polyhedron with 10 triangular faces
In geometry, a hemi-icosahedron is an abstract regular polyhedron, containing half the faces of a regular icosahedron. It can be realized as a projective polyhedron (a tessellation of the real projective plane by 10 triangles), which can be visualized by constructing the projective plane as a hemisphere where opposite points along the boundary are connected and dividing the hemisphere into three equal parts.
It has 10 triangular faces, 15 edges, and 6 vertices.
It is also related to the nonconvex uniform polyhedron, the tetrahemihexahedron, which could be topologically identical to the hemi-icosahedron if each of the 3 square faces were divided into two triangles.
It can be represented symmetrically on faces, and vertices as Schlegel diagrams:
Face-centered The complete graph K6[edit]It has the same vertices and edges as the 5-dimensional 5-simplex which has a complete graph of edges, but only contains half of the (20) faces.
From the point of view of graph theory this is an embedding of K 6 {\displaystyle K_{6}} (the complete graph with 6 vertices) on a real projective plane. With this embedding, the dual graph is the Petersen graph --- see hemi-dodecahedron.
The complete graph K6 represents the 6 vertices and 15 edges of the hemi-icosahedronRetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4