A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://en.wikipedia.org/wiki/Hafnium-178 below:

Isotopes of hafnium - Wikipedia

Toggle the table of contents Isotopes of hafnium

From Wikipedia, the free encyclopedia

(Redirected from Hafnium-178)

Natural hafnium (72Hf) consists of five observationally stable isotopes (176Hf, 177Hf, 178Hf, 179Hf, and 180Hf) and one very long-lived radioisotope, 174Hf, with a half-life of 3.8×1016 years.[2] In addition, there are 34 known synthetic radioisotopes, the most stable of which is 182Hf with a half-life of 8.9×106 years. This extinct radionuclide is used in hafnium–tungsten dating to study the chronology of planetary differentiation.[5]

No other radioisotope has a half-life over 1.87 years. Most isotopes have half-lives under 1 minute. There are also at least 27 nuclear isomers, the most stable of which is 178m2Hf with a half-life of 31 years. All isotopes of hafnium are either radioactive or observationally stable, meaning that they are predicted to be radioactive but no actual decay has been observed.

Nuclide
[n 1] Z N Isotopic mass (Da)[6]
[n 2][n 3] Half-life[1]
[n 4][n 5] Decay
mode
[1]
[n 6] Daughter
isotope

[n 7] Spin and
parity[1]
[n 8][n 5] Natural abundance (mole fraction) Excitation energy[n 5] Normal proportion[1] Range of variation 153Hf 72 81 152.97069(32)# 400# ms
[>200 ns] 1/2+# 154Hf 72 82 153.96486(32)# 2(1) s β+ 154Lu 0+ α (rare) 150Yb 154mHf 2721(50)# keV 9(4) μs IT 154Hf (10+) 155Hf 72 83 154.96317(32)# 843(30) ms β+ 155Lu 7/2−# 156Hf 72 84 155.95940(16) 23(1) ms α 152Yb 0+ 156mHf 1958.8(10) keV 480(40) μs α 152Yb (8+) 157Hf 72 85 156.95829(22)# 115(1) ms α (94%) 153Yb 7/2− β+ (6%) 157Lu 158Hf 72 86 157.954801(19) 2.85(7) s β+ (55.7%) 158Lu 0+ α (44.3%) 154Yb 159Hf 72 87 158.953996(18) 5.20(10) s β+ (65%) 159Lu 7/2− α (35%) 155Yb 160Hf 72 88 159.950683(10) 13.6(2) s β+ (99.3%) 160Lu 0+ α (0.7%) 156Yb 161Hf 72 89 160.950278(25) 18.4(4) s β+ (99.71%) 161Lu (7/2−) α (0.29%) 157Yb 161mHf 329.0(5) keV 4.8(2) μs IT 161Hf (13/2+) 162Hf 72 90 161.9472155(96) 39.4(9) s β+ (99.99%) 162Lu 0+ α (0.008%) 158Yb 163Hf 72 91 162.947107(28) 40.0(6) s β+ 163Lu (5/2−) 164Hf 72 92 163.944371(17) 111(8) s β+ 164Lu 0+ 165Hf 72 93 164.944567(30) 76(4) s β+ 165Lu (5/2−) 166Hf 72 94 165.942180(30) 6.77(30) min β+ 166Lu 0+ 167Hf 72 95 166.942600(30) 2.05(5) min β+ 167Lu (5/2)− 168Hf 72 96 167.940568(30) 25.95(20) min EC (98%) 168Lu 0+ β+ (2%) 168Lu 169Hf 72 97 168.941259(30) 3.24(4) min β+ 169Lu (5/2−) 170Hf 72 98 169.939609(30) 16.01(13) h EC 170Lu 0+ 171Hf 72 99 170.940492(31) 12.1(4) h β+ 171Lu 7/2+ 171mHf 21.93(9) keV 29.5(9) s IT 171Hf 1/2− 172Hf 72 100 171.939450(26) 1.87(3) y EC 172Lu 0+ 172mHf 2005.84(11) keV 163(3) ns IT 172Hf (8−) 173Hf 72 101 172.940513(30) 23.6(1) h β+ 173Lu 1/2− 173m1Hf 107.16(5) keV 180(8) ns IT 173Hf 5/2− 173m2Hf 197.47(10) keV 160(40) ns IT 173Hf 7/2+ 174Hf[n 9] 72 102 173.9400484(24) 3.8+1.7
−0.9
×1016 y
[2] α[n 10] 170Yb 0+ 0.0016(12) 174m1Hf 1549.26(4) keV 138(4) ns IT 174Hf 6+ 174m2Hf 1797.59(7) keV 2.39(4) μs IT 174Hf 8− 174m3Hf 3312.07(6) keV 3.7(2) μs IT 174Hf 14+ 175Hf 72 103 174.9415114(25) 70.65(19) d EC 175Lu 5/2− 175m1Hf 125.89(12) keV 53.7(15) μs IT 175Hf 1/2− 175m2Hf 1433.41(12) keV 1.10(8) μs IT 175Hf 19/2+ 175m3Hf 3015.6(4) keV 1.21(15) μs IT 175Hf 35/2− 175m4Hf 4636.2(12) keV 1.9(1) μs IT 175Hf 45/2+ 176Hf[n 11] 72 104 175.9414098(16) Observationally Stable[n 12] 0+ 0.0526(70) 176m1Hf 1333.07(7) keV 9.6(3) μs IT 176Hf 6+ 176m2Hf 1559.31(9) keV 9.9(2) μs IT 176Hf 8− 176m3Hf 2865.8(7) keV 401(6) μs IT 176Hf 14− 176m4Hf 4863.6(9) keV 43(4) μs IT 176Hf 22− 177Hf 72 105 176.9432302(15) Observationally Stable[n 13] 7/2− 0.1860(16) 177m1Hf 1315.4502(8) keV 1.09(5) s IT 177Hf 23/2+ 177m2Hf 1342.4(10) keV 55.9(12) μs IT 177Hf (19/2−) 177m3Hf 2740.02(15) keV 51.4(5) min IT 177Hf 37/2− 178Hf 72 106 177.9437083(15) Observationally Stable[n 14] 0+ 0.2728(28) 178m1Hf 1147.416(6) keV 4.0(2) s IT 178Hf 8− 178m2Hf 2446.09(8) keV 31(1) y IT 178Hf 16+ 178m3Hf 2572.4(3) keV 68(2) μs IT 178Hf 14− 179Hf 72 107 178.9458257(15) Observationally Stable[n 15] 9/2+ 0.1362(11) 179m1Hf 375.0352(25) keV 18.67(4) s IT 179Hf 1/2− 179m2Hf 1106.412(33) keV 25.00(17) d IT 179Hf 25/2− 179m3Hf 3775.2(21) keV 15(5) μs IT 179Hf (43/2+) 180Hf 72 108 179.9465595(15) Observationally Stable[n 16] 0+ 0.3508(33) 180m1Hf 1141.552(15) keV 5.53(2) h IT (99.69%) 180Hf 8− β (0.31%) 180m1Ta[7] 180m2Hf 1374.36(4) keV 570(20) μs IT 180Hf 4− 180m3Hf 2485.5(5) keV 0.94(11) μs IT 180Hf 12+ 180m4Hf 3599.0(10) keV 90(10) μs IT 180Hf (18−) 181Hf 72 109 180.9491108(15) 42.39(6) d β 181Ta 1/2− 181m1Hf 595.27(4) keV 80(5) μs IT 181Hf (9/2+) 181m2Hf 1043.5(8) keV ~100 μs IT 181Hf (17/2+) 181m3Hf 1741.9(13) keV 1.5(5) ms IT 181Hf (25/2−) 182Hf[n 17] 72 110 181.9505637(66) 8.90(9)×106 y β 182Ta 0+ 182m1Hf 1172.87(18) keV 61.5(15) min β (54%) 182Ta 8− IT (46%) 182Hf 182m2Hf 2571.3(12) keV 40(10) μs IT 182Hf (13+) 183Hf 72 111 182.953533(32) 1.018(2) h β 183Ta (3/2−) 183mHf 1464(64) keV 40(30) s IT 183Hf 27/2−# 184Hf 72 112 183.955449(43) 4.12(5) h β 184Ta 0+ 184m1Hf 1272.2(4) keV 48(10) s IT 184Hf 8− 184m2Hf 2477(10) keV 16(7) min 15+# 185Hf 72 113 184.958862(69) 3.5(6) min β 185Ta (9/2−) 186Hf 72 114 185.960897(55) 2.6(12) min β 186Ta 0+ 186mHf 2968(43) keV >20 s 17+# 187Hf 72 115 186.96457(22)# 14# s
[>300 ns] 9/2−# 187mHf 500(300)# keV 270(80) ns IT 187Hf 3/2−# 188Hf 72 116 187.96690(32)# 7# s
[>300 ns] 0+ 189Hf 72 117 188.97085(32)# 400# ms
[>300 ns] 3/2−# 190Hf 72 118 189.97338(43)# 600# ms
[>300 ns] 0+ 191Hf[8] 72 119 192Hf[8] 72 120 0+ This table header & footer:
  1. ^ mHf – Excited nuclear isomer.
  2. ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^ Bold half-life – nearly stable, half-life longer than age of universe.
  5. ^ a b c # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  6. ^ Modes of decay:
  7. ^ Bold symbol as daughter – Daughter product is stable.
  8. ^ ( ) spin value – Indicates spin with weak assignment arguments.
  9. ^ primordial radionuclide
  10. ^ Theorized to also undergo β+β+ decay to 174Yb
  11. ^ Used in lutetium-hafnium dating
  12. ^ Believed to undergo α decay to 172Yb
  13. ^ Believed to undergo α decay to 173Yb with a half-life over 1.3×1018 y.
  14. ^ Believed to undergo α decay to 174Yb
  15. ^ Believed to undergo α decay to 175Yb
  16. ^ Believed to undergo α decay to 176Yb
  17. ^ Extinct radionuclide, used in hafnium–tungsten dating[5]

Daughter products other than hafnium

  1. ^ a b c d e Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. ^ a b c Belli, P.; Bernabei, R.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Incicchitti, A.; Laubenstein, M.; Leoncini, A.; Merlo, V.; Nagorny, S.S.; Nahorna, V.V.; Nisi, S.; Wang, P. (January 2025). "A new measurement of 174Hf alpha decay". Nuclear Physics A. 1053: 122976. doi:10.1016/j.nuclphysa.2024.122976.
  3. ^ "Standard Atomic Weights: Hafnium". CIAAW. 2019.
  4. ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  5. ^ a b Kleine T, Walker RJ (August 2017). "Tungsten Isotopes in Planets". Annual Review of Earth and Planetary Sciences. 45 (1): 389–417. Bibcode:2017AREPS..45..389K. doi:10.1146/annurev-earth-063016-020037. PMC 6398955. PMID 30842690.
  6. ^ Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  7. ^ McCutchan, E.A. (May 2015). "Nuclear Data Sheets for A = 180". Nuclear Data Sheets. 126: 151–372. doi:10.1016/j.nds.2015.05.002.
  8. ^ a b Haak, K.; Tarasov, O. B.; Chowdhury, P.; et al. (2023). "Production and discovery of neutron-rich isotopes by fragmentation of 198Pt". Physical Review C. 108 (34608): 034608. Bibcode:2023PhRvC.108c4608H. doi:10.1103/PhysRevC.108.034608. S2CID 261649436.

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4