import mpmath import numpy as np from matplotlib import pyplot as plt plt.rcParams['svg.fonttype'] = 'path' x = np.linspace(-30, 30, 300) y = [complex(1,1)]*len(x) for p, xx in enumerate(x): t = mpmath.nstr(mpmath.mpc(0.5 + xx*1j)) y[p] = mpmath.zeta(t) fig = plt.figure(figsize=[13,6]) ax = fig.add_subplot(111) ax.spines['left'].set_position('zero') ax.spines['right'].set_color('none') ax.spines['bottom'].set_position('zero') ax.spines['top'].set_color('none') ax.spines['left'].set_smart_bounds(True) ax.spines['bottom'].set_smart_bounds(True) ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.text(-25,2.7, '$\\Re\\left[\\zeta\\left(\\frac{1}{2}+ix\\right)\\right]$', size='xx-large', color='red') ax.text(-15,2.7, '$\\Im\\left[\\zeta\\left(\\frac{1}{2}+ix\\right)\\right]$', size='xx-large', color='blue') ax.plot(x, [yy.real for yy in y], label='Real', color='red') ax.plot(x, [yy.imag for yy in y], label='Imag', color='blue') # ax.legend(loc=(.6,.8)) ax.minorticks_on() ax.grid(b=True, which='major', ls='-', lw=1.5) ax.grid(b=True, which='minor', ls='--', lw=.5) fig.savefig('RiemannCriticalLine.svg', bbox_inches='tight')
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4