A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://en.wikipedia.org/wiki/Domain_of_a_function below:

Domain of a function - Wikipedia

From Wikipedia, the free encyclopedia

Mathematical concept

A function f from X to Y. The set of points in the red oval X is the domain of f. Graph of the real-valued square root function, f(x) = x, whose domain consists of all nonnegative real numbers

In mathematics, the domain of a function is the set of inputs accepted by the function. It is sometimes denoted by dom ⁡ ( f ) {\displaystyle \operatorname {dom} (f)} or dom ⁡ f {\displaystyle \operatorname {dom} f} , where f is the function. In layman's terms, the domain of a function can generally be thought of as "what x can be".[1]

More precisely, given a function f : X → Y {\displaystyle f\colon X\to Y} , the domain of f is X. In modern mathematical language, the domain is part of the definition of a function rather than a property of it.

In the special case that X and Y are both sets of real numbers, the function f can be graphed in the Cartesian coordinate system. In this case, the domain is represented on the x-axis of the graph, as the projection of the graph of the function onto the x-axis.

For a function f : X → Y {\displaystyle f\colon X\to Y} , the set Y is called the codomain: the set to which all outputs must belong. The set of specific outputs the function assigns to elements of X is called its range or image. The image of f is a subset of Y, shown as the yellow oval in the accompanying diagram.

Any function can be restricted to a subset of its domain. The restriction of f : X → Y {\displaystyle f\colon X\to Y} to A {\displaystyle A} , where A ⊆ X {\displaystyle A\subseteq X} , is written as f | A : A → Y {\displaystyle \left.f\right|_{A}\colon A\to Y} .

If a real function f is given by a formula, it may be not defined for some values of the variable. In this case, it is a partial function, and the set of real numbers on which the formula can be evaluated to a real number is called the natural domain or domain of definition of f. In many contexts, a partial function is called simply a function, and its natural domain is called simply its domain.

The term domain is also commonly used in a different sense in mathematical analysis: a domain is a non-empty connected open set in a topological space. In particular, in real and complex analysis, a domain is a non-empty connected open subset of the real coordinate space R n {\displaystyle \mathbb {R} ^{n}} or the complex coordinate space C n . {\displaystyle \mathbb {C} ^{n}.}

Sometimes such a domain is used as the domain of a function, although functions may be defined on more general sets. The two concepts are sometimes conflated as in, for example, the study of partial differential equations: in that case, a domain is the open connected subset of R n {\displaystyle \mathbb {R} ^{n}} where a problem is posed, making it both an analysis-style domain and also the domain of the unknown function(s) sought.

Set theoretical notions[edit]

For example, it is sometimes convenient in set theory to permit the domain of a function to be a proper class X, in which case there is formally no such thing as a triple (X, Y, G). With such a definition, functions do not have a domain, although some authors still use it informally after introducing a function in the form f: XY.[2]


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4