From Wikipedia, the free encyclopedia
Integer that is a factor of another integer
"Divisible" redirects here. For divisibility of groups, see
Divisible group.
The divisors of 10 illustrated with Cuisenaire rods: 1, 2, 5, and 10In mathematics, a divisor of an integer n , {\displaystyle n,} also called a factor of n , {\displaystyle n,} is an integer m {\displaystyle m} that may be multiplied by some integer to produce n . {\displaystyle n.} In this case, one also says that n {\displaystyle n} is a multiple of m . {\displaystyle m.} An integer n {\displaystyle n} is divisible or evenly divisible by another integer m {\displaystyle m} if m {\displaystyle m} is a divisor of n {\displaystyle n} ; this implies dividing n {\displaystyle n} by m {\displaystyle m} leaves no remainder.
An integer n {\displaystyle n} is divisible by a nonzero integer m {\displaystyle m} if there exists an integer k {\displaystyle k} such that n = k m . {\displaystyle n=km.} This is written as
This may be read as that m {\displaystyle m} divides n , {\displaystyle n,} m {\displaystyle m} is a divisor of n , {\displaystyle n,} m {\displaystyle m} is a factor of n , {\displaystyle n,} or n {\displaystyle n} is a multiple of m . {\displaystyle m.} If m {\displaystyle m} does not divide n , {\displaystyle n,} then the notation is m ∤ n . {\displaystyle m\not \mid n.}
There are two conventions, distinguished by whether m {\displaystyle m} is permitted to be zero:
Divisors can be negative as well as positive, although often the term is restricted to positive divisors. For example, there are six divisors of 4; they are 1, 2, 4, −1, −2, and −4, but only the positive ones (1, 2, and 4) would usually be mentioned.
1 and −1 divide (are divisors of) every integer. Every integer (and its negation) is a divisor of itself. Integers divisible by 2 are called even, and integers not divisible by 2 are called odd.
1, −1, n {\displaystyle n} and − n {\displaystyle -n} are known as the trivial divisors of n . {\displaystyle n.} A divisor of n {\displaystyle n} that is not a trivial divisor is known as a non-trivial divisor (or strict divisor[6]). A nonzero integer with at least one non-trivial divisor is known as a composite number, while the units −1 and 1 and prime numbers have no non-trivial divisors.
There are divisibility rules that allow one to recognize certain divisors of a number from the number's digits.
Plot of the number of divisors of integers from 1 to 1000. Prime numbers have exactly 2 divisors, and highly composite numbers are in bold.There are some elementary rules:
If a ∣ b c , {\displaystyle a\mid bc,} and gcd ( a , b ) = 1 , {\displaystyle \gcd(a,b)=1,} then a ∣ c . {\displaystyle a\mid c.} [b] This is called Euclid's lemma.
If p {\displaystyle p} is a prime number and p ∣ a b {\displaystyle p\mid ab} then p ∣ a {\displaystyle p\mid a} or p ∣ b . {\displaystyle p\mid b.}
A positive divisor of n {\displaystyle n} that is different from n {\displaystyle n} is called a proper divisor or an aliquot part of n {\displaystyle n} (for example, the proper divisors of 6 are 1, 2, and 3). A number that does not evenly divide n {\displaystyle n} but leaves a remainder is sometimes called an aliquant part of n . {\displaystyle n.}
An integer n > 1 {\displaystyle n>1} whose only proper divisor is 1 is called a prime number. Equivalently, a prime number is a positive integer that has exactly two positive factors: 1 and itself.
Any positive divisor of n {\displaystyle n} is a product of prime divisors of n {\displaystyle n} raised to some power. This is a consequence of the fundamental theorem of arithmetic.
A number n {\displaystyle n} is said to be perfect if it equals the sum of its proper divisors, deficient if the sum of its proper divisors is less than n , {\displaystyle n,} and abundant if this sum exceeds n . {\displaystyle n.}
The total number of positive divisors of n {\displaystyle n} is a multiplicative function d ( n ) , {\displaystyle d(n),} meaning that when two numbers m {\displaystyle m} and n {\displaystyle n} are relatively prime, then d ( m n ) = d ( m ) × d ( n ) . {\displaystyle d(mn)=d(m)\times d(n).} For instance, d ( 42 ) = 8 = 2 × 2 × 2 = d ( 2 ) × d ( 3 ) × d ( 7 ) {\displaystyle d(42)=8=2\times 2\times 2=d(2)\times d(3)\times d(7)} ; the eight divisors of 42 are 1, 2, 3, 6, 7, 14, 21 and 42. However, the number of positive divisors is not a totally multiplicative function: if the two numbers m {\displaystyle m} and n {\displaystyle n} share a common divisor, then it might not be true that d ( m n ) = d ( m ) × d ( n ) . {\displaystyle d(mn)=d(m)\times d(n).} The sum of the positive divisors of n {\displaystyle n} is another multiplicative function σ ( n ) {\displaystyle \sigma (n)} (for example, σ ( 42 ) = 96 = 3 × 4 × 8 = σ ( 2 ) × σ ( 3 ) × σ ( 7 ) = 1 + 2 + 3 + 6 + 7 + 14 + 21 + 42 {\displaystyle \sigma (42)=96=3\times 4\times 8=\sigma (2)\times \sigma (3)\times \sigma (7)=1+2+3+6+7+14+21+42} ). Both of these functions are examples of divisor functions.
If the prime factorization of n {\displaystyle n} is given by
then the number of positive divisors of n {\displaystyle n} is
and each of the divisors has the form
where 0 ≤ μ i ≤ ν i {\displaystyle 0\leq \mu _{i}\leq \nu _{i}} for each 1 ≤ i ≤ k . {\displaystyle 1\leq i\leq k.}
For every natural n , {\displaystyle n,} d ( n ) < 2 n . {\displaystyle d(n)<2{\sqrt {n}}.}
Also,
where γ {\displaystyle \gamma } is Euler–Mascheroni constant. One interpretation of this result is that a randomly chosen positive integer n has an average number of divisors of about ln n . {\displaystyle \ln n.} However, this is a result from the contributions of numbers with "abnormally many" divisors.
In abstract algebra[edit]In definitions that allow the divisor to be 0, the relation of divisibility turns the set N {\displaystyle \mathbb {N} } of non-negative integers into a partially ordered set that is a complete distributive lattice. The largest element of this lattice is 0 and the smallest is 1. The meet operation ∧ is given by the greatest common divisor and the join operation ∨ by the least common multiple. This lattice is isomorphic to the dual of the lattice of subgroups of the infinite cyclic group Z.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4