A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://en.wikipedia.org/wiki/Divided_differences below:

Divided differences - Wikipedia

Algorithm for computing polynomial coefficients

In mathematics, divided differences is an algorithm, historically used for computing tables of logarithms and trigonometric functions.[citation needed] Charles Babbage's difference engine, an early mechanical calculator, was designed to use this algorithm in its operation.[1]

Divided differences is a recursive division process. Given a sequence of data points ( x 0 , y 0 ) , … , ( x n , y n ) {\displaystyle (x_{0},y_{0}),\ldots ,(x_{n},y_{n})} , the method calculates the coefficients of the interpolation polynomial of these points in the Newton form.

It is sometimes denoted by a delta with a bar: △ | {\displaystyle {\text{△}}\!\!\!|\,\,} or ◿ ◺ {\displaystyle {\text{◿}}\!{\text{◺}}} .

Given n + 1 data points ( x 0 , y 0 ) , … , ( x n , y n ) {\displaystyle (x_{0},y_{0}),\ldots ,(x_{n},y_{n})} where the x k {\displaystyle x_{k}} are assumed to be pairwise distinct, the forward divided differences are defined as: [ y k ] := y k , k ∈ { 0 , … , n } [ y k , … , y k + j ] := [ y k + 1 , … , y k + j ] − [ y k , … , y k + j − 1 ] x k + j − x k , k ∈ { 0 , … , n − j } ,   j ∈ { 1 , … , n } . {\displaystyle {\begin{aligned}{\mathopen {[}}y_{k}]&:=y_{k},&&k\in \{0,\ldots ,n\}\\{\mathopen {[}}y_{k},\ldots ,y_{k+j}]&:={\frac {[y_{k+1},\ldots ,y_{k+j}]-[y_{k},\ldots ,y_{k+j-1}]}{x_{k+j}-x_{k}}},&&k\in \{0,\ldots ,n-j\},\ j\in \{1,\ldots ,n\}.\end{aligned}}}

To make the recursive process of computation clearer, the divided differences can be put in tabular form, where the columns correspond to the value of j above, and each entry in the table is computed from the difference of the entries to its immediate lower left and to its immediate upper left, divided by a difference of corresponding x-values: x 0 y 0 = [ y 0 ] [ y 0 , y 1 ] x 1 y 1 = [ y 1 ] [ y 0 , y 1 , y 2 ] [ y 1 , y 2 ] [ y 0 , y 1 , y 2 , y 3 ] x 2 y 2 = [ y 2 ] [ y 1 , y 2 , y 3 ] [ y 2 , y 3 ] x 3 y 3 = [ y 3 ] {\displaystyle {\begin{matrix}x_{0}&y_{0}=[y_{0}]&&&\\&&[y_{0},y_{1}]&&\\x_{1}&y_{1}=[y_{1}]&&[y_{0},y_{1},y_{2}]&\\&&[y_{1},y_{2}]&&[y_{0},y_{1},y_{2},y_{3}]\\x_{2}&y_{2}=[y_{2}]&&[y_{1},y_{2},y_{3}]&\\&&[y_{2},y_{3}]&&\\x_{3}&y_{3}=[y_{3}]&&&\\\end{matrix}}}

Note that the divided difference [ y k , … , y k + j ] {\displaystyle [y_{k},\ldots ,y_{k+j}]} depends on the values x k , … , x k + j {\displaystyle x_{k},\ldots ,x_{k+j}} and y k , … , y k + j {\displaystyle y_{k},\ldots ,y_{k+j}} , but the notation hides the dependency on the x-values. If the data points are given by a function f, ( x 0 , y 0 ) , … , ( x k , y n ) = ( x 0 , f ( x 0 ) ) , … , ( x n , f ( x n ) ) {\displaystyle (x_{0},y_{0}),\ldots ,(x_{k},y_{n})=(x_{0},f(x_{0})),\ldots ,(x_{n},f(x_{n}))} one sometimes writes the divided difference in the notation f [ x k , … , x k + j ]   = def   [ f ( x k ) , … , f ( x k + j ) ] = [ y k , … , y k + j ] . {\displaystyle f[x_{k},\ldots ,x_{k+j}]\ {\stackrel {\text{def}}{=}}\ [f(x_{k}),\ldots ,f(x_{k+j})]=[y_{k},\ldots ,y_{k+j}].} Other notations for the divided difference of the function ƒ on the nodes x0, ..., xn are: f [ x k , … , x k + j ] = [ x 0 , … , x n ] f = [ x 0 , … , x n ; f ] = D [ x 0 , … , x n ] f . {\displaystyle f[x_{k},\ldots ,x_{k+j}]={\mathopen {[}}x_{0},\ldots ,x_{n}]f={\mathopen {[}}x_{0},\ldots ,x_{n};f]=D[x_{0},\ldots ,x_{n}]f.}

Divided differences for k = 0 {\displaystyle k=0} and the first few values of j {\displaystyle j} : [ y 0 ] = y 0 [ y 0 , y 1 ] = y 1 − y 0 x 1 − x 0 [ y 0 , y 1 , y 2 ] = [ y 1 , y 2 ] − [ y 0 , y 1 ] x 2 − x 0 = y 2 − y 1 x 2 − x 1 − y 1 − y 0 x 1 − x 0 x 2 − x 0 = y 2 − y 1 ( x 2 − x 1 ) ( x 2 − x 0 ) − y 1 − y 0 ( x 1 − x 0 ) ( x 2 − x 0 ) [ y 0 , y 1 , y 2 , y 3 ] = [ y 1 , y 2 , y 3 ] − [ y 0 , y 1 , y 2 ] x 3 − x 0 {\displaystyle {\begin{aligned}{\mathopen {[}}y_{0}]&=y_{0}\\{\mathopen {[}}y_{0},y_{1}]&={\frac {y_{1}-y_{0}}{x_{1}-x_{0}}}\\{\mathopen {[}}y_{0},y_{1},y_{2}]&={\frac {{\mathopen {[}}y_{1},y_{2}]-{\mathopen {[}}y_{0},y_{1}]}{x_{2}-x_{0}}}={\frac {{\frac {y_{2}-y_{1}}{x_{2}-x_{1}}}-{\frac {y_{1}-y_{0}}{x_{1}-x_{0}}}}{x_{2}-x_{0}}}={\frac {y_{2}-y_{1}}{(x_{2}-x_{1})(x_{2}-x_{0})}}-{\frac {y_{1}-y_{0}}{(x_{1}-x_{0})(x_{2}-x_{0})}}\\{\mathopen {[}}y_{0},y_{1},y_{2},y_{3}]&={\frac {{\mathopen {[}}y_{1},y_{2},y_{3}]-{\mathopen {[}}y_{0},y_{1},y_{2}]}{x_{3}-x_{0}}}\end{aligned}}}

Thus, the table corresponding to these terms upto two columns has the following form: x 0 y 0 y 1 − y 0 x 1 − x 0 x 1 y 1 y 2 − y 1 x 2 − x 1 − y 1 − y 0 x 1 − x 0 x 2 − x 0 y 2 − y 1 x 2 − x 1 x 2 y 2 ⋮ ⋮ ⋮ ⋮ ⋮ x n y n {\displaystyle {\begin{matrix}x_{0}&y_{0}&&\\&&{y_{1}-y_{0} \over x_{1}-x_{0}}&\\x_{1}&y_{1}&&{{y_{2}-y_{1} \over x_{2}-x_{1}}-{y_{1}-y_{0} \over x_{1}-x_{0}} \over x_{2}-x_{0}}\\&&{y_{2}-y_{1} \over x_{2}-x_{1}}&\\x_{2}&y_{2}&&\vdots \\&&\vdots &\\\vdots &&&\vdots \\&&\vdots &\\x_{n}&y_{n}&&\\\end{matrix}}}

The divided difference scheme can be put into an upper triangular matrix: T f ( x 0 , … , x n ) = ( f [ x 0 ] f [ x 0 , x 1 ] f [ x 0 , x 1 , x 2 ] … f [ x 0 , … , x n ] 0 f [ x 1 ] f [ x 1 , x 2 ] … f [ x 1 , … , x n ] 0 0 f [ x 2 ] … f [ x 2 , … , x n ] ⋮ ⋮ ⋱ ⋮ 0 0 0 … f [ x n ] ) . {\displaystyle T_{f}(x_{0},\dots ,x_{n})={\begin{pmatrix}f[x_{0}]&f[x_{0},x_{1}]&f[x_{0},x_{1},x_{2}]&\ldots &f[x_{0},\dots ,x_{n}]\\0&f[x_{1}]&f[x_{1},x_{2}]&\ldots &f[x_{1},\dots ,x_{n}]\\0&0&f[x_{2}]&\ldots &f[x_{2},\dots ,x_{n}]\\\vdots &\vdots &&\ddots &\vdots \\0&0&0&\ldots &f[x_{n}]\end{pmatrix}}.}

Then it holds

Polynomials and power series[edit]

The matrix J = ( x 0 1 0 0 ⋯ 0 0 x 1 1 0 ⋯ 0 0 0 x 2 1 0 ⋮ ⋮ ⋱ ⋱ 0 0 0 0 ⋱ 1 0 0 0 0 x n ) {\displaystyle J={\begin{pmatrix}x_{0}&1&0&0&\cdots &0\\0&x_{1}&1&0&\cdots &0\\0&0&x_{2}&1&&0\\\vdots &\vdots &&\ddots &\ddots &\\0&0&0&0&\;\ddots &1\\0&0&0&0&&x_{n}\end{pmatrix}}} contains the divided difference scheme for the identity function with respect to the nodes x 0 , … , x n {\displaystyle x_{0},\dots ,x_{n}} , thus J m {\displaystyle J^{m}} contains the divided differences for the power function with exponent m {\displaystyle m} . Consequently, you can obtain the divided differences for a polynomial function p {\displaystyle p} by applying p {\displaystyle p} to the matrix J {\displaystyle J} : If p ( ξ ) = a 0 + a 1 ⋅ ξ + ⋯ + a m ⋅ ξ m {\displaystyle p(\xi )=a_{0}+a_{1}\cdot \xi +\dots +a_{m}\cdot \xi ^{m}} and p ( J ) = a 0 + a 1 ⋅ J + ⋯ + a m ⋅ J m {\displaystyle p(J)=a_{0}+a_{1}\cdot J+\dots +a_{m}\cdot J^{m}} then T p ( x ) = p ( J ) . {\displaystyle T_{p}(x)=p(J).} This is known as Opitz' formula.[2][3]

Now consider increasing the degree of p {\displaystyle p} to infinity, i.e. turn the Taylor polynomial into a Taylor series. Let f {\displaystyle f} be a function which corresponds to a power series. You can compute the divided difference scheme for f {\displaystyle f} by applying the corresponding matrix series to J {\displaystyle J} : If f ( ξ ) = ∑ k = 0 ∞ a k ξ k {\displaystyle f(\xi )=\sum _{k=0}^{\infty }a_{k}\xi ^{k}} and f ( J ) = ∑ k = 0 ∞ a k J k {\displaystyle f(J)=\sum _{k=0}^{\infty }a_{k}J^{k}} then T f ( x ) = f ( J ) . {\displaystyle T_{f}(x)=f(J).}

Alternative characterizations[edit]

f [ x 0 ] = f ( x 0 ) f [ x 0 , x 1 ] = f ( x 0 ) ( x 0 − x 1 ) + f ( x 1 ) ( x 1 − x 0 ) f [ x 0 , x 1 , x 2 ] = f ( x 0 ) ( x 0 − x 1 ) ⋅ ( x 0 − x 2 ) + f ( x 1 ) ( x 1 − x 0 ) ⋅ ( x 1 − x 2 ) + f ( x 2 ) ( x 2 − x 0 ) ⋅ ( x 2 − x 1 ) f [ x 0 , x 1 , x 2 , x 3 ] = f ( x 0 ) ( x 0 − x 1 ) ⋅ ( x 0 − x 2 ) ⋅ ( x 0 − x 3 ) + f ( x 1 ) ( x 1 − x 0 ) ⋅ ( x 1 − x 2 ) ⋅ ( x 1 − x 3 ) + f ( x 2 ) ( x 2 − x 0 ) ⋅ ( x 2 − x 1 ) ⋅ ( x 2 − x 3 ) + f ( x 3 ) ( x 3 − x 0 ) ⋅ ( x 3 − x 1 ) ⋅ ( x 3 − x 2 ) f [ x 0 , … , x n ] = ∑ j = 0 n f ( x j ) ∏ k ∈ { 0 , … , n } ∖ { j } ( x j − x k ) {\displaystyle {\begin{aligned}f[x_{0}]&=f(x_{0})\\f[x_{0},x_{1}]&={\frac {f(x_{0})}{(x_{0}-x_{1})}}+{\frac {f(x_{1})}{(x_{1}-x_{0})}}\\f[x_{0},x_{1},x_{2}]&={\frac {f(x_{0})}{(x_{0}-x_{1})\cdot (x_{0}-x_{2})}}+{\frac {f(x_{1})}{(x_{1}-x_{0})\cdot (x_{1}-x_{2})}}+{\frac {f(x_{2})}{(x_{2}-x_{0})\cdot (x_{2}-x_{1})}}\\f[x_{0},x_{1},x_{2},x_{3}]&={\frac {f(x_{0})}{(x_{0}-x_{1})\cdot (x_{0}-x_{2})\cdot (x_{0}-x_{3})}}+{\frac {f(x_{1})}{(x_{1}-x_{0})\cdot (x_{1}-x_{2})\cdot (x_{1}-x_{3})}}+\\&\quad \quad {\frac {f(x_{2})}{(x_{2}-x_{0})\cdot (x_{2}-x_{1})\cdot (x_{2}-x_{3})}}+{\frac {f(x_{3})}{(x_{3}-x_{0})\cdot (x_{3}-x_{1})\cdot (x_{3}-x_{2})}}\\f[x_{0},\dots ,x_{n}]&=\sum _{j=0}^{n}{\frac {f(x_{j})}{\prod _{k\in \{0,\dots ,n\}\setminus \{j\}}(x_{j}-x_{k})}}\end{aligned}}}

With the help of the polynomial function ω ( ξ ) = ( ξ − x 0 ) ⋯ ( ξ − x n ) {\displaystyle \omega (\xi )=(\xi -x_{0})\cdots (\xi -x_{n})} this can be written as f [ x 0 , … , x n ] = ∑ j = 0 n f ( x j ) ω ′ ( x j ) . {\displaystyle f[x_{0},\dots ,x_{n}]=\sum _{j=0}^{n}{\frac {f(x_{j})}{\omega '(x_{j})}}.}

If x 0 < x 1 < ⋯ < x n {\displaystyle x_{0}<x_{1}<\cdots <x_{n}} and n ≥ 1 {\displaystyle n\geq 1} , the divided differences can be expressed as[4] f [ x 0 , … , x n ] = 1 ( n − 1 ) ! ∫ x 0 x n f ( n ) ( t ) B n − 1 ( t ) d t {\displaystyle f[x_{0},\ldots ,x_{n}]={\frac {1}{(n-1)!}}\int _{x_{0}}^{x_{n}}f^{(n)}(t)\;B_{n-1}(t)\,dt} where f ( n ) {\displaystyle f^{(n)}} is the n {\displaystyle n} -th derivative of the function f {\displaystyle f} and B n − 1 {\displaystyle B_{n-1}} is a certain B-spline of degree n − 1 {\displaystyle n-1} for the data points x 0 , … , x n {\displaystyle x_{0},\dots ,x_{n}} , given by the formula B n − 1 ( t ) = ∑ k = 0 n ( max ( 0 , x k − t ) ) n − 1 ω ′ ( x k ) {\displaystyle B_{n-1}(t)=\sum _{k=0}^{n}{\frac {(\max(0,x_{k}-t))^{n-1}}{\omega '(x_{k})}}}

This is a consequence of the Peano kernel theorem; it is called the Peano form of the divided differences and B n − 1 {\displaystyle B_{n-1}} is the Peano kernel for the divided differences, all named after Giuseppe Peano.

Forward and backward differences[edit]

When the data points are equidistantly distributed we get the special case called forward differences. They are easier to calculate than the more general divided differences.

Given n+1 data points ( x 0 , y 0 ) , … , ( x n , y n ) {\displaystyle (x_{0},y_{0}),\ldots ,(x_{n},y_{n})} with x k = x 0 + k h ,    for    k = 0 , … , n  and fixed  h > 0 {\displaystyle x_{k}=x_{0}+kh,\ {\text{ for }}\ k=0,\ldots ,n{\text{ and fixed }}h>0} the forward differences are defined as Δ ( 0 ) y k := y k , k = 0 , … , n Δ ( j ) y k := Δ ( j − 1 ) y k + 1 − Δ ( j − 1 ) y k , k = 0 , … , n − j ,   j = 1 , … , n . {\displaystyle {\begin{aligned}\Delta ^{(0)}y_{k}&:=y_{k},\qquad k=0,\ldots ,n\\\Delta ^{(j)}y_{k}&:=\Delta ^{(j-1)}y_{k+1}-\Delta ^{(j-1)}y_{k},\qquad k=0,\ldots ,n-j,\ j=1,\dots ,n.\end{aligned}}} whereas the backward differences are defined as: ∇ ( 0 ) y k := y k , k = 0 , … , n ∇ ( j ) y k := ∇ ( j − 1 ) y k − ∇ ( j − 1 ) y k − 1 , k = 0 , … , n − j ,   j = 1 , … , n . {\displaystyle {\begin{aligned}\nabla ^{(0)}y_{k}&:=y_{k},\qquad k=0,\ldots ,n\\\nabla ^{(j)}y_{k}&:=\nabla ^{(j-1)}y_{k}-\nabla ^{(j-1)}y_{k-1},\qquad k=0,\ldots ,n-j,\ j=1,\dots ,n.\end{aligned}}} Thus the forward difference table is written as: y 0 Δ y 0 y 1 Δ 2 y 0 Δ y 1 Δ 3 y 0 y 2 Δ 2 y 1 Δ y 2 y 3 {\displaystyle {\begin{matrix}y_{0}&&&\\&\Delta y_{0}&&\\y_{1}&&\Delta ^{2}y_{0}&\\&\Delta y_{1}&&\Delta ^{3}y_{0}\\y_{2}&&\Delta ^{2}y_{1}&\\&\Delta y_{2}&&\\y_{3}&&&\\\end{matrix}}} whereas the backwards difference table is written as: y 0 ∇ y 1 y 1 ∇ 2 y 2 ∇ y 2 ∇ 3 y 3 y 2 ∇ 2 y 3 ∇ y 3 y 3 {\displaystyle {\begin{matrix}y_{0}&&&\\&\nabla y_{1}&&\\y_{1}&&\nabla ^{2}y_{2}&\\&\nabla y_{2}&&\nabla ^{3}y_{3}\\y_{2}&&\nabla ^{2}y_{3}&\\&\nabla y_{3}&&\\y_{3}&&&\\\end{matrix}}}

The relationship between divided differences and forward differences is[5] [ y j , y j + 1 , … , y j + k ] = 1 k ! h k Δ ( k ) y j , {\displaystyle [y_{j},y_{j+1},\ldots ,y_{j+k}]={\frac {1}{k!h^{k}}}\Delta ^{(k)}y_{j},} whereas for backward differences:[citation needed] [ y j , y j − 1 , … , y j − k ] = 1 k ! h k ∇ ( k ) y j . {\displaystyle [{y}_{j},y_{j-1},\ldots ,{y}_{j-k}]={\frac {1}{k!h^{k}}}\nabla ^{(k)}y_{j}.}

  1. ^ Isaacson, Walter (2014). The Innovators. Simon & Schuster. p. 20. ISBN 978-1-4767-0869-0.
  2. ^ de Boor, Carl, Divided Differences, Surv. Approx. Theory 1 (2005), 46–69, [1]
  3. ^ Opitz, G. Steigungsmatrizen, Z. Angew. Math. Mech. (1964), 44, T52–T54
  4. ^ Skof, Fulvia (2011-04-30). Giuseppe Peano between Mathematics and Logic: Proceeding of the International Conference in honour of Giuseppe Peano on the 150th anniversary of his birth and the centennial of the Formulario Mathematico Torino (Italy) October 2-3, 2008. Springer Science & Business Media. p. 40. ISBN 978-88-470-1836-5.
  5. ^ Burden, Richard L.; Faires, J. Douglas (2011). Numerical Analysis (9th ed.). Cengage Learning. p. 129. ISBN 9780538733519.

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4