A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://en.wikipedia.org/wiki/Cyclotomic_field below:

Cyclotomic field - Wikipedia

From Wikipedia, the free encyclopedia

Field extension of the rational numbers by a primitive root of unity

In algebraic number theory, a cyclotomic field is a number field obtained by adjoining a root of unity to Q {\displaystyle \mathbb {Q} } , the field of rational numbers.[1]

Cyclotomic fields played a crucial role in the development of modern algebra and number theory because of their relation with Fermat's Last Theorem. It was in the process of his deep investigations of the arithmetic of these fields (for prime n {\displaystyle n} )—and more precisely, because of the failure of unique factorization in their rings of integers—that Ernst Kummer first introduced the concept of an ideal number and proved his celebrated congruences.

For n ≥ 1 {\displaystyle n\geq 1} , let

ζ n = e 2 π i / n ∈ C {\displaystyle \zeta _{n}=e^{2\pi i/n}\in \mathbb {C} } .

This is a primitive n {\displaystyle n} th root of unity. Then the n {\displaystyle n} th cyclotomic field is the field extension Q ( ζ n ) {\displaystyle \mathbb {Q} (\zeta _{n})} of Q {\displaystyle \mathbb {Q} } generated by ζ n {\displaystyle \zeta _{n}} .

( − 1 ) φ ( n ) / 2 n φ ( n ) ∏ p | n p φ ( n ) / ( p − 1 ) . {\displaystyle (-1)^{\varphi (n)/2}\,{\frac {n^{\varphi (n)}}{\displaystyle \prod _{p|n}p^{\varphi (n)/(p-1)}}}.}
Relation with regular polygons[edit]

Gauss made early inroads in the theory of cyclotomic fields, in connection with the problem of constructing a regular n-gon with a compass and straightedge. His surprising result that had escaped his predecessors was that a regular 17-gon could be so constructed. More generally, for any integer n ≥ 3 {\displaystyle n\geq 3} , the following are equivalent:

Relation with Fermat's Last Theorem[edit]

A natural approach to proving Fermat's Last Theorem is to factor the binomial x n + y n {\displaystyle x^{n}+y^{n}} , where n {\displaystyle n} is an odd prime, appearing in one side of Fermat's equation

x n + y n = z n {\displaystyle x^{n}+y^{n}=z^{n}}

as follows:

x n + y n = ( x + y ) ( x + ζ n y ) … ( x + ζ n n − 1 y ) {\displaystyle x^{n}+y^{n}=(x+y)(x+\zeta _{n}y)\ldots (x+\zeta _{n}^{n-1}y)}

Here x {\displaystyle x} and y {\displaystyle y} are ordinary integers, whereas the factors are algebraic integers in the cyclotomic field Q ( ζ n ) {\displaystyle \mathbb {Q} (\zeta _{n})} . If unique factorization holds in the cyclotomic integers Z [ ζ n ] {\displaystyle \mathbb {Z} [\zeta _{n}]} , then it can be used to rule out the existence of nontrivial solutions to Fermat's equation.

Several attempts to tackle Fermat's Last Theorem proceeded along these lines, and both Fermat's proof for n = 4 {\displaystyle n=4} and Euler's proof for n = 3 {\displaystyle n=3} can be recast in these terms. The complete list of n for which Z [ ζ n ] {\displaystyle \mathbb {Z} [\zeta _{n}]} has unique factorization is

Kummer found a way to deal with the failure of unique factorization. He introduced a replacement for the prime numbers in the cyclotomic integers Z [ ζ n ] {\displaystyle \mathbb {Z} [\zeta _{n}]} , measured the failure of unique factorization via the class number h n {\displaystyle h_{n}} and proved that if h p {\displaystyle h_{p}} is not divisible by a prime p {\displaystyle p} (such p {\displaystyle p} are called regular primes) then Fermat's theorem is true for the exponent n = p {\displaystyle n=p} . Furthermore, he gave a criterion to determine which primes are regular, and established Fermat's theorem for all prime exponents p {\displaystyle p} less than 100, except for the irregular primes 37, 59, and 67. Kummer's work on the congruences for the class numbers of cyclotomic fields was generalized in the twentieth century by Iwasawa in Iwasawa theory and by Kubota and Leopoldt in their theory of p {\displaystyle p} -adic zeta functions.

List of class numbers of cyclotomic fields[edit]

(sequence A061653 in the OEIS), or OEISA055513 or OEISA000927 for the h {\displaystyle h} -part (for prime n)


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4