A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://en.wikipedia.org/wiki/411_(number) below:

400 (number) - Wikipedia

This article is about the numbers 400 to 499. For the year 400 AD, see

400

. For other uses, see

400 (disambiguation)

.

Natural number

← 399 400 401 → Cardinal four hundred Ordinal 400th
(four hundredth) Factorization 24 × 52 Divisors 1, 2, 4, 5, 8, 10, 16, 20, 25, 40, 50, 80, 100, 200, 400 Greek numeral Υ´ Roman numeral CD, cd Binary 1100100002 Ternary 1122113 Senary 15046 Octal 6208 Duodecimal 29412 Hexadecimal 19016 Hebrew ת Armenian Ն Babylonian cuneiform 𒐚𒐏 Egyptian hieroglyph 𓍥

400 (four hundred) is the natural number following 399 and preceding 401.

Mathematical properties[edit]

A circle is divided into 400 grads.

Integers from 401 to 499[edit]

401 is a prime number, tetranacci number,[1] Chen prime,[2] prime index prime

402 = 2 × 3 × 67, sphenic number, nontotient, Harshad number, number of graphs with 8 nodes and 9 edges[5]

403 = 13 × 31, heptagonal number, Mertens function returns 0.[3]

404 = 22 × 101, Mertens function returns 0,[3] nontotient, noncototient, number of integer partitions of 20 with an alternating permutation.[7]

405 = 34 × 5, Mertens function returns 0,[3] Harshad number, pentagonal pyramidal number;

406 = 2 × 7 × 29, sphenic number, 28th triangular number,[9] centered nonagonal number,[10] even nontotient, Narayana's cow number[11]

English

Wikisource

has original text related to this article:

407 = 11 × 37,

408 = 23 × 3 × 17

409 is a prime number, Chen prime,[2] centered triangular number.[17]

410 = 2 × 5 × 41, sphenic number, sum of six consecutive primes (59 + 61 + 67 + 71 + 73 + 79), nontotient, Harshad number, number of triangle-free graphs on 8 vertices[19]

411 = 3 × 137, self number,[20]

412 = 22 × 103, nontotient, noncototient, sum of twelve consecutive primes (13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53 + 59), 41264 + 1 is prime

413 = 7 × 59, Mertens function returns 0,[3] self number,[20] Blum integer

414 = 2 × 32 × 23, Mertens function returns 0,[3] nontotient, Harshad number, number of balanced partitions of 31[21]

∑ n = 0 10 414 n {\displaystyle \sum _{n=0}^{10}{414}^{n}} is prime[22]

415 = 5 × 83, logarithmic number[23]

416 = 25 × 13, number of independent vertex sets and vertex covers in the 6-sunlet graph[24]

417 = 3 × 139, Blum integer

418 = 2 × 11 × 19; sphenic number,[25] balanced number.[26] It is also the fourth 71-gonal number.[27]

A prime number, Sophie Germain prime,[31] Chen prime,[2] Eisenstein prime with no imaginary part, highly cototient number,[32] Mertens function returns 0[3]

422 = 2 × 211, Mertens function returns 0,[3] nontotient, since 422 = 202 + 20 + 2 it is the maximum number of regions into which 21 intersecting circles divide the plane.[34]

423 = 32 × 47, Mertens function returns 0,[3] Harshad number, number of secondary structures of RNA molecules with 10 nucleotides[35]

424 = 23 × 53, sum of ten consecutive primes (23 + 29 + 31 + 37 + 41 + 43 + 47 + 53 + 59 + 61), Mertens function returns 0,[3] refactorable number,[36] self number[20]

425 = 52 × 17, pentagonal number,[37] centered tetrahedral number, sum of three consecutive primes (137 + 139 + 149), Mertens function returns 0,[3] the second number that can be expressed as the sum of two squares in three different ways (425 = 202 + 52 = 192 + 82 = 162 + 132).

426 = 2 × 3 × 71, sphenic number, nontotient, untouchable number

427 = 7 × 61, Mertens function returns 0.[3] 427! + 1 is prime.

428 = 22 × 107, Mertens function returns 0, nontotient, 42832 + 1 is prime[38]

429 = 3 × 11 × 13, sphenic number, Catalan number[39]

430 = 2 × 5 × 43, number of primes below 3000, sphenic number, untouchable number[16]

A prime number, Sophie Germain prime,[31] sum of seven consecutive primes (47 + 53 + 59 + 61 + 67 + 71 + 73), Chen prime,[2] prime index prime, Eisenstein prime with no imaginary part

432 = 24 × 33 = 42 × 33, the sum of four consecutive primes (103 + 107 + 109 + 113), a Harshad number, a highly totient number,[40] an Achilles number and the sum of totient function for first 37 integers. 432! is the first factorial that is not a Harshad number in base 10. 432 is also three-dozen sets of a dozen, making it three gross. An equilateral triangle whose area and perimeter are equal, has an area (and perimeter) equal to 432 {\displaystyle {\sqrt {432}}} .

A prime number, Markov number,[41] star number.[42]

434 = 2 × 7 × 31, sphenic number, sum of six consecutive primes (61 + 67 + 71 + 73 + 79 + 83), nontotient, maximal number of pieces that can be obtained by cutting an annulus with 28 cuts[43]

435 = 3 × 5 × 29, sphenic number, 29th triangular number,[44] hexagonal number,[45] self number,[20] number of compositions of 16 into distinct parts[46]

436 = 22 × 109, nontotient, noncototient, lazy caterer number [13]

437 = 19 × 23, Blum integer

438 = 2 × 3 × 73, sphenic number, Smith number.[47]

A prime number, sum of three consecutive primes (139 + 149 + 151), sum of nine consecutive primes (31 + 37 + 41 + 43 + 47 + 53 + 59 + 61 + 67), strictly non-palindromic number[48]

441 = 32 × 72 = 212

442 = 2 × 13 × 17 = 212 + 1,[50] sphenic number, sum of eight consecutive primes (41 + 43 + 47 + 53 + 59 + 61 + 67 + 71)

A prime number, Sophie Germain prime,[31] Chen prime,[2] Eisenstein prime with no imaginary part, Mertens function sets new low of -9, which stands until 659.

444 = 22 × 3 × 37, refactorable number,[36] Harshad number, number of noniamonds without holes,[51] and a repdigit.

445 = 5 × 89, number of series-reduced trees with 17 nodes[52]

446 = 2 × 223, nontotient, self number[20]

447 = 3 × 149, number of 1's in all partitions of 22 into odd parts[53]

448 = 26 × 7, untouchable number,[16] refactorable number,[36] Harshad number

A prime number, sum of five consecutive primes (79 + 83 + 89 + 97 + 101), Chen prime,[2] Eisenstein prime with no imaginary part, Proth prime.[54] Also the largest number whose factorial is less than 101000

450 = 2 × 32 × 52, nontotient, sum of totient function for first 38 integers, refactorable number,[36] Harshad number,

451 = 11 × 41; 451 is a Wedderburn–Etherington number[55] and a centered decagonal number;[56] its reciprocal has period 10; 451 is the smallest number with this period reciprocal length.

452 = 22 × 113, number of surface-points of a tetrahedron with edge-length 15[59]

453 = 3 × 151, Blum integer

454 = 2 × 227, nontotient, a Smith number[47]

455 = 5 × 7 × 13, sphenic number, tetrahedral number[60]

456 = 23 × 3 × 19, sum of a twin prime (227 + 229), sum of four consecutive primes (107 + 109 + 113 + 127), centered pentagonal number,[62] icosahedral number

458 = 2 × 229, nontotient, number of partitions of 24 into divisors of 24[64]

459 = 33 × 17, triangular matchstick number[65]

460 = 22 × 5 × 23, centered triangular number,[17] dodecagonal number,[66] Harshad number, sum of twelve consecutive primes (17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53 + 59 + 61)

A prime number, Chen prime,[2] sexy prime with 467, Eisenstein prime with no imaginary part, prime index prime

462 = 2 × 3 × 7 × 11, binomial coefficient ( 11 5 ) {\displaystyle {\tbinom {11}{5}}} , stirling number of the second kind { 9 7 } {\displaystyle \left\{{9 \atop 7}\right\}} , sum of six consecutive primes (67 + 71 + 73 + 79 + 83 + 89), pronic number,[67] sparsely totient number,[68] idoneal number

A prime number, sum of seven consecutive primes (53 + 59 + 61 + 67 + 71 + 73 + 79), centered heptagonal number.[69] This number is the first of seven consecutive primes that are one less than a multiple of 4 (from 463 to 503).

464 = 24 × 29, primitive abundant number,[70] since 464 = 212 + 21 + 2 it is the maximum number of regions into which 22 intersecting circles divide the plane,[34] maximal number of pieces that can be obtained by cutting an annulus with 29 cuts[43]

465 = 3 × 5 × 31, sphenic number, 30th triangular number,[71] member of the Padovan sequence,[72] Harshad number

466 = 2 × 233, noncototient, lazy caterer number.[13]

A prime number, safe prime,[73] sexy prime with 461, Chen prime,[2] Eisenstein prime with no imaginary part

∑ n = 0 10 467 n {\displaystyle \sum _{n=0}^{10}{467}^{n}} is prime[22]

468 = 22 × 32 × 13, sum of ten consecutive primes (29 + 31 + 37 + 41 + 43 + 47 + 53 + 59 + 61 + 67), refactorable number,[36] self number,[20] Harshad number

469 = 7 × 67, centered hexagonal number.[74] 469! - 1 is prime.

470 = 2 × 5 × 47, sphenic number, nontotient, noncototient, cake number

471 = 3 × 157, sum of three consecutive primes (151 + 157 + 163), perfect totient number,[75] φ(471) = φ(σ(471)).[76]

472 = 23 × 59, nontotient, untouchable number,[16] refactorable number,[36] number of distinct ways to cut a 5 × 5 square into squares with integer sides[77]

473 = 11 × 43, sum of five consecutive primes (83 + 89 + 97 + 101 + 103), Blum integer

474 = 2 × 3 × 79, sphenic number, sum of eight consecutive primes (43 + 47 + 53 + 59 + 61 + 67 + 71 + 73), nontotient, noncototient, sum of totient function for first 39 integers, untouchable number,[16] nonagonal number[78]

475 = 52 × 19, 49-gonal number, member of the Mian–Chowla sequence.[4]

476 = 22 × 7 × 17, Harshad number, admirable number[79]

477 = 32 × 53, pentagonal number[37]

478 = 2 × 239, Companion Pell number, number of partitions of 26 that do not contain 1 as a part[80]

A prime number, safe prime,[73] sum of nine consecutive primes (37 + 41 + 43 + 47 + 53 + 59 + 61 + 67 + 71), Chen prime,[2] Eisenstein prime with no imaginary part, self number[20]

480 = 25 × 3 × 5, sum of a twin prime (239 + 241), sum of four consecutive primes (109 + 113 + 127 + 131), highly totient number,[40] refactorable number,[36] Harshad number, largely composite number[81]

∑ n = 0 10 480 n {\displaystyle \sum _{n=0}^{10}{480}^{n}} is prime[22]

481 = 13 × 37, octagonal number,[15] centered square number,[33] Harshad number

482 = 2 × 241, nontotient, noncototient, number of series-reduced planted trees with 15 nodes[82]

483 = 3 × 7 × 23, sphenic number, Smith number[47]

484 = 22 × 112 = 222, palindromic square, nontotient

485 = 5 × 97, number of triangles (of all sizes, including holes) in Sierpiński's triangle after 5 inscriptions[83]

486 = 2 × 35, Harshad number, Perrin number[84]

A prime number, sum of three consecutive primes (157 + 163 + 167), Chen prime,[2]

488 = 23 × 61, nontotient, refactorable number,[36] φ(488) = φ(σ(488)),[76] number of surface points on a cube with edge-length 10.[86]

489 = 3 × 163, octahedral number[87]

490 = 2 × 5 × 72, noncototient, sum of totient function for first 40 integers, number of integer partitions of 19,[88] self number.[20]

A prime number, isolated prime, Sophie Germain prime,[31] Chen prime,[2] Eisenstein prime with no imaginary part, strictly non-palindromic number[48]

492 = 22 × 3 × 41, sum of six consecutive primes (71 + 73 + 79 + 83 + 89 + 97), refactorable number,[36] member of a Ruth–Aaron pair with 493 under first definition

493 = 17 × 29, sum of seven consecutive primes (59 + 61 + 67 + 71 + 73 + 79 + 83), member of a Ruth–Aaron pair with 492 under first definition, the 493d centered octagonal number is also a centered square number[89]

494 = 2 × 13 × 19 = ⟨ ⟨ 8 1 ⟩ ⟩ {\displaystyle \left\langle \!\!\left\langle {8 \atop 1}\right\rangle \!\!\right\rangle } ,[90] sphenic number, nontotient

497 = 7 × 71, sum of five consecutive primes (89 + 97 + 101 + 103 + 107), lazy caterer number.[13]

498 = 2 × 3 × 83, sphenic number, untouchable number,[16] admirable number,[91] abundant number

A prime number, isolated prime, Chen prime,[2] 4499 - 3499 is prime

  1. ^ Sloane, N. J. A. (ed.). "Sequence A000078 (Tetranacci numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  2. ^ a b c d e f g h i j k l Sloane, N. J. A. (ed.). "Sequence A109611 (Chen primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  3. ^ a b c d e f g h i j k l m n Sloane, N. J. A. (ed.). "Sequence A028442 (Numbers n such that Mertens' function is zero)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  4. ^ a b Sloane, N. J. A. (ed.). "Sequence A005282 (Mian-Chowla sequence)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  5. ^ Sloane, N. J. A. (ed.). "Sequence A008406 (Triangle T(n,k) read by rows, giving number of graphs with n nodes (n >= 1) and k edges (0 <= k <= n(n-1)/2))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  6. ^ Sloane, N. J. A. (ed.). "Sequence A083815 (Semiprimes whose prime factors are distinct and the reversal of one factor is equal to the other)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  7. ^ Sloane, N. J. A. (ed.). "Sequence A345170 (Number of integer partitions of n with an alternating permutation)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  8. ^ Wiener, Anna. "Page Not Found: A Brief History of the 404 Error". Wired. ISSN 1059-1028. Retrieved 2024-12-05.
  9. ^ "A000217 - OEIS". oeis.org. Retrieved 2024-11-28.
  10. ^ Sloane, N. J. A. (ed.). "Sequence A060544 (Centered 9-gonal (also known as nonagonal or enneagonal) numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  11. ^ Sloane, N. J. A. (ed.). "Sequence A000930 (Narayana's cows sequence)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  12. ^ Sloane, N. J. A. (ed.). "Sequence A005188 (Armstrong (or Plus Perfect, or narcissistic) numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  13. ^ a b c d Sloane, N. J. A. (ed.). "Sequence A000124 (Central polygonal numbers (the Lazy Caterer's sequence): n(n+1)/2 + 1; or, maximal number of pieces formed when slicing a pancake with n cuts)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  14. ^ Sloane, N. J. A. (ed.). "Sequence A000129 (Pell numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  15. ^ a b Sloane, N. J. A. (ed.). "Sequence A000567 (Octagonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  16. ^ a b c d e f Sloane, N. J. A. (ed.). "Sequence A005114 (Untouchable numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  17. ^ a b Sloane, N. J. A. (ed.). "Sequence A005448 (Centered triangular numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  18. ^ "Venice: The City Built on Water". Google Maps. Retrieved 2022-09-21.
  19. ^ Sloane, N. J. A. (ed.). "Sequence A006785 (Number of triangle-free graphs on n vertices)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  20. ^ a b c d e f g h i Sloane, N. J. A. (ed.). "Sequence A003052 (Self numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  21. ^ Sloane, N. J. A. (ed.). "Sequence A047993 (Number of balanced partitions of n: the largest part equals the number of parts)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  22. ^ a b c Sloane, N. J. A. (ed.). "Sequence A162862 (Numbers n such that n^10 + n^9 + n^8 + n^7 + n^6 + n^5 + n^4 + n^3 + n^2 + n + 1 is prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  23. ^ Sloane, N. J. A. (ed.). "Sequence A002104 (Logarithmic numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  24. ^ Sloane, N. J. A. (ed.). "Sequence A080040 (a(n) = 2*a(n-1) + 2*a(n-2) for n > 1; a(0)=2, a(1)=2)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  25. ^ Sloane, N. J. A. (ed.). "Sequence A007304 (Sphenic numbers: products of 3 distinct primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  26. ^ Sloane, N. J. A. (ed.). "Sequence A020492 (Balanced numbers: numbers k such that phi(k) (A000010) divides sigma(k) (A000203))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  27. ^ Conway, John H.; Guy, Richard (2012). The Book of Numbers. Springer. p. 39. doi:10.1007/978-1-4612-4072-3. ISBN 978-1-4612-4072-3. OCLC 39220031.
  28. ^ Sloane, N. J. A. (ed.). "Sequence A040017 (Unique period primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-05-20.
    That number is 142,857,157,142,857,142,856,999,999,985,714,285,714,285,857,142,857,142,855,714,285,571,428,571,428,572,857,143.
  29. ^ L. Masinter (1 April 1998). "Hyper Text Coffee Pot Control Protocol (HTCPCP/1.0)". Network Working Group (RFC). doi:10.17487/RFC2324. Retrieved 13 Sep 2018. Any attempt to brew coffee with a teapot should result in the error code "418 I'm a teapot". The resulting entity body MAY be short and stout.
  30. ^ I. Nazar (1 April 2014). "The Hyper Text Coffee Pot Control Protocol for Tea Efflux Appliances (HTCPCP-TEA)". IETF Request for Comments (RFC) Pages - Test (RFC). doi:10.17487/RFC7168. ISSN 2070-1721. Retrieved 13 Sep 2018. TEA-capable pots that are not provisioned to brew coffee may return either a status code of 503, indicating temporary unavailability of coffee, or a code of 418 as defined in the base HTCPCP specification to denote a more permanent indication that the pot is a teapot.
  31. ^ a b c d Sloane, N. J. A. (ed.). "Sequence A005384 (Sophie Germain primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  32. ^ Sloane, N. J. A. (ed.). "Sequence A100827 (Highly cototient numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  33. ^ a b Sloane, N. J. A. (ed.). "Sequence A001844 (Centered square numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  34. ^ a b Sloane, N. J. A. (ed.). "Sequence A014206 (a(n) = n^2 + n + 2)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  35. ^ Sloane, N. J. A. (ed.). "Sequence A004148 (Generalized Catalan numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  36. ^ a b c d e f g h i j Sloane, N. J. A. (ed.). "Sequence A033950 (Refactorable numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  37. ^ a b Sloane, N. J. A. (ed.). "Sequence A000326 (Pentagonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  38. ^ Sloane, N. J. A. (ed.). "Sequence A006315 (Numbers n such that n^32 + 1 is prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  39. ^ Sloane, N. J. A. (ed.). "Sequence A000108 (Catalan numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  40. ^ a b Sloane, N. J. A. (ed.). "Sequence A097942 (Highly totient numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  41. ^ Sloane, N. J. A. (ed.). "Sequence A002559 (Markoff (or Markov) numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  42. ^ Sloane, N. J. A. (ed.). "Sequence A003154 (Centered 12-gonal numbers. Also star numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  43. ^ a b Sloane, N. J. A. (ed.). "Sequence A000096 (a(n) = n*(n+3)/2)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  44. ^ "A000217 - OEIS". oeis.org. Retrieved 2024-11-28.
  45. ^ Sloane, N. J. A. (ed.). "Sequence A000384 (Hexagonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  46. ^ Sloane, N. J. A. (ed.). "Sequence A032020 (Number of compositions (ordered partitions) of n into distinct parts)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  47. ^ a b c Sloane, N. J. A. (ed.). "Sequence A006753 (Smith numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  48. ^ a b Sloane, N. J. A. (ed.). "Sequence A016038 (Strictly non-palindromic numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  49. ^ Sloane, N. J. A. (ed.). "Sequence A016754 (Odd squares: a(n) = (2n+1)^2. Also centered octagonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  50. ^ Sloane, N. J. A. (ed.). "Sequence A002522 (a(n) = n^2 + 1)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  51. ^ Sloane, N. J. A. (ed.). "Sequence A070765 (Number of polyiamonds with n cells, without holes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  52. ^ Sloane, N. J. A. (ed.). "Sequence A000014 (Number of series-reduced trees with n nodes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  53. ^ Sloane, N. J. A. (ed.). "Sequence A036469 (Partial sums of A000009 (partitions into distinct parts))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  54. ^ Sloane, N. J. A. (ed.). "Sequence A080076 (Proth primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  55. ^ Sloane, N. J. A. (ed.). "Sequence A001190 (Wedderburn-Etherington numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  56. ^ Sloane, N. J. A. (ed.). "Sequence A062786 (Centered 10-gonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  57. ^ LeBlanc, Marc (June 2023). "OG System Shock dev plays remake 1". YouTube. Retrieved 18 August 2023.
  58. ^ "451 Unavailable For Legal Reasons - HTTP | MDN". developer.mozilla.org. Retrieved 2021-04-23.
  59. ^ Sloane, N. J. A. (ed.). "Sequence A005893 (Number of points on surface of tetrahedron)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  60. ^ Sloane, N. J. A. (ed.). "Sequence A000292 (Tetrahedral numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  61. ^ Sloane, N. J. A. (ed.). "Sequence A111441 (Numbers k such that the sum of the squares of the first k primes is divisible by k)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  62. ^ Sloane, N. J. A. (ed.). "Sequence A005891 (Centered pentagonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  63. ^ Grant, Kenneth (1977). Nightside of Eden. London: Frederick Muller Limited. p. 119. ISBN 0-584-10206-2.
  64. ^ Sloane, N. J. A. (ed.). "Sequence A018818 (Number of partitions of n into divisors of n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  65. ^ Sloane, N. J. A. (ed.). "Sequence A045943 (Triangular matchstick numbers: a(n) = 3*n*(n+1)/2)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  66. ^ Sloane, N. J. A. (ed.). "Sequence A051624 (12-gonal (or dodecagonal) numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  67. ^ Sloane, N. J. A. (ed.). "Sequence A002378 (Oblong (or promic, pronic, or heteromecic) numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  68. ^ Sloane, N. J. A. (ed.). "Sequence A036913 (Sparsely totient numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  69. ^ Sloane, N. J. A. (ed.). "Sequence A069099 (Centered heptagonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  70. ^ Sloane, N. J. A. (ed.). "Sequence A091191 (Primitive abundant numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  71. ^ "A000217 - OEIS". oeis.org. Retrieved 2024-11-28.
  72. ^ Sloane, N. J. A. (ed.). "Sequence A000931 (Padovan sequence)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  73. ^ a b Sloane, N. J. A. (ed.). "Sequence A005385 (Safe primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  74. ^ Sloane, N. J. A. (ed.). "Sequence A003215 (Hex (or centered hexagonal) numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  75. ^ Sloane, N. J. A. (ed.). "Sequence A082897 (Perfect totient numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  76. ^ a b Sloane, N. J. A. (ed.). "Sequence A006872 (Numbers k such that phi(k) = phi(sigma(k)))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  77. ^ Sloane, N. J. A. (ed.). "Sequence A045846 (Number of distinct ways to cut an n X n square into squares with integer sides)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  78. ^ Sloane, N. J. A. (ed.). "Sequence A001106 (9-gonal (or enneagonal or nonagonal) numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  79. ^ Sloane, N. J. A. (ed.). "Sequence A111592 (Admirable numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  80. ^ Sloane, N. J. A. (ed.). "Sequence A002865 (Number of partitions of n that do not contain 1 as a part)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  81. ^ Sloane, N. J. A. (ed.). "Sequence A067128 (Ramanujan's largely composite numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  82. ^ Sloane, N. J. A. (ed.). "Sequence A001678 (Number of series-reduced planted trees with n nodes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  83. ^ Sloane, N. J. A. (ed.). "Sequence A048473 (a(0)=1, a(n) = 3*a(n-1) + 2; a(n) = 2*3^n - 1)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  84. ^ Sloane, N. J. A. (ed.). "Sequence A001608 (Perrin sequence)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  85. ^ Sloane, N. J. A. (ed.). "Sequence A045616 (Primes p such that 10^(p-1) == 1 (mod p^2))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  86. ^ Sloane, N. J. A. (ed.). "Sequence A005897 (a(n) = 6*n^2 + 2 for n > 0, a(0)=1)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  87. ^ Sloane, N. J. A. (ed.). "Sequence A005900 (Octahedral numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  88. ^ Sloane, N. J. A. (ed.). "Sequence A000041 (a(n) = number of partitions of n (the partition numbers))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  89. ^ Sloane, N. J. A. (ed.). "Sequence A011900 (a(n) = 6*a(n-1) - a(n-2) - 2 with a(0) = 1, a(1) = 3)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  90. ^ Sloane, N. J. A. (ed.). "Sequence A008517 (Second-order Eulerian triangle T(n, k), 1 <= k <= n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  91. ^ Sloane, N. J. A. (ed.). "Sequence A111592 (Admirable numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
Integers −1 0s 100s 200s 300s 400s 500s 600s 700s 800s 900s 1000s

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4