A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://en.wikipedia.org/wiki/*-algebra below:

*-algebra - Wikipedia

From Wikipedia, the free encyclopedia

Mathematical structure in abstract algebra

In mathematics, and more specifically in abstract algebra, a *-algebra (or involutive algebra; read as "star-algebra") is a mathematical structure consisting of two involutive rings R and A, where R is commutative and A has the structure of an associative algebra over R. Involutive algebras generalize the idea of a number system equipped with conjugation, for example the complex numbers and complex conjugation, matrices over the complex numbers and conjugate transpose, and linear operators over a Hilbert space and Hermitian adjoints. However, it may happen that an algebra admits no involution.[a]

Look up

*

or

star

in Wiktionary, the free dictionary.

In mathematics, a *-ring is a ring with a map * : AA that is an antiautomorphism and an involution.

More precisely, * is required to satisfy the following properties:[1]

for all x, y in A.

This is also called an involutive ring, involutory ring, and ring with involution. The third axiom is implied by the second and fourth axioms, making it redundant.

Elements such that x* = x are called self-adjoint.[2]

Archetypical examples of a *-ring are fields of complex numbers and algebraic numbers with complex conjugation as the involution. One can define a sesquilinear form over any *-ring.

Also, one can define *-versions of algebraic objects, such as ideal and subring, with the requirement to be *-invariant: xIx* ∈ I and so on.

*-rings are unrelated to star semirings in the theory of computation.

A *-algebra A is a *-ring,[b] with involution * that is an associative algebra over a commutative *-ring R with involution , such that (r x)* = rx*  ∀rR, xA.[3]

The base *-ring R is often the complex numbers (with acting as complex conjugation).

It follows from the axioms that * on A is conjugate-linear in R, meaning

(λ x + μy)* = λx* + μy*

for λ, μR, x, yA.

A *-homomorphism f : AB is an algebra homomorphism that is compatible with the involutions of A and B, i.e.,

Philosophy of the *-operation[edit]

The *-operation on a *-ring is analogous to complex conjugation on the complex numbers. The *-operation on a *-algebra is analogous to taking adjoints in complex matrix algebras.

The * involution is a unary operation written with a postfixed star glyph centered above or near the mean line:

xx*, or
xx (TeX: x^*),

but not as "x"; see the asterisk article for details.

Involutive Hopf algebras are important examples of *-algebras (with the additional structure of a compatible comultiplication); the most familiar example being:

Not every algebra admits an involution:

Regard the 2×2 matrices over the complex numbers. Consider the following subalgebra: A := { ( a b 0 0 ) : a , b ∈ C } {\displaystyle {\mathcal {A}}:=\left\{{\begin{pmatrix}a&b\\0&0\end{pmatrix}}:a,b\in \mathbb {C} \right\}}

Any nontrivial antiautomorphism necessarily has the form:[4] φ z [ ( 1 0 0 0 ) ] = ( 1 z 0 0 ) φ z [ ( 0 1 0 0 ) ] = ( 0 0 0 0 ) {\displaystyle \varphi _{z}\left[{\begin{pmatrix}1&0\\0&0\end{pmatrix}}\right]={\begin{pmatrix}1&z\\0&0\end{pmatrix}}\quad \varphi _{z}\left[{\begin{pmatrix}0&1\\0&0\end{pmatrix}}\right]={\begin{pmatrix}0&0\\0&0\end{pmatrix}}} for any complex number z ∈ C {\displaystyle z\in \mathbb {C} } .

It follows that any nontrivial antiautomorphism fails to be involutive: φ z 2 [ ( 0 1 0 0 ) ] = ( 0 0 0 0 ) ≠ ( 0 1 0 0 ) {\displaystyle \varphi _{z}^{2}\left[{\begin{pmatrix}0&1\\0&0\end{pmatrix}}\right]={\begin{pmatrix}0&0\\0&0\end{pmatrix}}\neq {\begin{pmatrix}0&1\\0&0\end{pmatrix}}}

Concluding that the subalgebra admits no involution.

Additional structures[edit]

Many properties of the transpose hold for general *-algebras:

Given a *-ring, there is also the map −* : x ↦ −x*. It does not define a *-ring structure (unless the characteristic is 2, in which case −* is identical to the original *), as 1 ↦ −1, neither is it antimultiplicative, but it satisfies the other axioms (linear, involution) and hence is quite similar to *-algebra where xx*.

Elements fixed by this map (i.e., such that a = −a*) are called skew Hermitian.

For the complex numbers with complex conjugation, the real numbers are the Hermitian elements, and the imaginary numbers are the skew Hermitian.

  1. ^ In this context, involution is taken to mean an involutory antiautomorphism, also known as an anti-involution.
  2. ^ Most definitions do not require a *-algebra to have the unity, i.e. a *-algebra is allowed to be a *-rng only.

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4