double remainder ( double x, double y );
remainder ( /*floating-point-type*/ x,
float remainderf( float x, float y );
(2) (since C++11)long double remainderl( long double x, long double y );
(3) (since C++11)constexpr /*math-common-simd-t*/<V0, V1>
template< class Integer >
double remainder ( Integer x, Integer y );
1-3) Computes the IEEE remainder of the floating point division operation x / y. The library provides overloads of std::remainder
for all cv-unqualified floating-point types as the type of the parameters.(since C++23)
S) The SIMD overload performs an element-wise std::remainder
on v_xand v_y.
A) Additional overloads are provided for all integer types, which are treated as double.
(since C++11)The IEEE floating-point remainder of the division operation x / y calculated by this function is exactly the value x - quo * y, where the value quo is the integral value nearest the exact value x / y. When |quo - x / y| = ½, the value quo is chosen to be even.
In contrast to std::fmod, the returned value is not guaranteed to have the same sign as x.
If the returned value is zero, it will have the same sign as x.
[edit] Parameters x, y - floating-point or integer values [edit] Return valueIf successful, returns the IEEE floating-point remainder of the division x / y as defined above.
If a domain error occurs, an implementation-defined value is returned (NaN where supported).
If a range error occurs due to underflow, the correct result is returned.
If y is zero, but the domain error does not occur, zero is returned.
[edit] Error handlingErrors are reported as specified in math_errhandling.
Domain error may occur if y is zero.
If the implementation supports IEEE floating-point arithmetic (IEC 60559),
POSIX requires that a domain error occurs if x is infinite or y is zero.
std::fmod, but not std::remainder
is useful for doing silent wrapping of floating-point types to unsigned integer types: (0.0 <= (y = std::fmod(std::rint(x), 65536.0))) ? y : 65536.0 + y is in the range [
-0.0,
65535.0]
, which corresponds to unsigned short, but std::remainder(std::rint(x), 65536.0) is in the range [
-32767.0,
+32768.0]
, which is outside of the range of signed short.
The additional overloads are not required to be provided exactly as (A). They only need to be sufficient to ensure that for their first argument num1 and second argument num2:
If num1 and num2 have arithmetic types, then std::remainder(num1, num2) has the same effect as std::remainder(static_cast</*common-floating-point-type*/>(num1),
static_cast</*common-floating-point-type*/>(num2)), where /*common-floating-point-type*/ is the floating-point type with the greatest floating-point conversion rank and greatest floating-point conversion subrank between the types of num1 and num2, arguments of integer type are considered to have the same floating-point conversion rank as double.
If no such floating-point type with the greatest rank and subrank exists, then overload resolution does not result in a usable candidate from the overloads provided.
(since C++23) [edit] Example#include <cfenv> #include <cmath> #include <iostream> // #pragma STDC FENV_ACCESS ON int main() { std::cout << "remainder(+5.1, +3.0) = " << std::remainder(5.1, 3) << '\n' << "remainder(-5.1, +3.0) = " << std::remainder(-5.1, 3) << '\n' << "remainder(+5.1, -3.0) = " << std::remainder(5.1, -3) << '\n' << "remainder(-5.1, -3.0) = " << std::remainder(-5.1, -3) << '\n'; // special values std::cout << "remainder(-0.0, 1.0) = " << std::remainder(-0.0, 1) << '\n' << "remainder(5.1, Inf) = " << std::remainder(5.1, INFINITY) << '\n'; // error handling std::feclearexcept(FE_ALL_EXCEPT); std::cout << "remainder(+5.1, 0) = " << std::remainder(5.1, 0) << '\n'; if (fetestexcept(FE_INVALID)) std::cout << " FE_INVALID raised\n"; }
Possible output:
remainder(+5.1, +3.0) = -0.9 remainder(-5.1, +3.0) = 0.9 remainder(+5.1, -3.0) = -0.9 remainder(-5.1, -3.0) = 0.9 remainder(-0.0, 1.0) = -0 remainder(5.1, Inf) = 5.1 remainder(+5.1, 0) = -nan FE_INVALID raised[edit] See also
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4