A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://en.cppreference.com/w/cpp/language/../utility/hash.html below:

std::hash - cppreference.com

template< class Key >
struct hash;

(since C++11)

The enabled specializations of the hash template define a function object that implements a hash function.

Given a type Key, each specialization std::hash<Key> is either enabled or disabled :

  • h, an object of type std::hash<Key>.
  • k1 and k2, objects of type Key.
All following requirements are satisfied:

Disabled specializations do not satisfy Hash, do not satisfy FunctionObject, and following values are all false:

In other words, they exist, but cannot be used.

Nested types Type Definition argument_type (deprecated in C++17) Key result_type (deprecated in C++17) std::size_t (until C++20) [edit] Member functions constructs a hash function object
(public member function) calculates the hash of the argument
(public member function) [edit] Standard library specializations

Each header that declares the template std::hash also provides enabled specializations of std::hash for the following types:

A freestanding implementation is required to provide these aforementioned specializations and the disabled-by-default specializations.

(since C++20)

On top of that, some headers also provide other enabled std::hash specializations for library types (see below).

[edit] Specializations for library types [edit] Notes

The actual hash functions are implementation-dependent and are not required to fulfill any other quality criteria except those specified above. Notably, some implementations use trivial (identity) hash functions which map an integer to itself. In other words, these hash functions are designed to work with unordered associative containers, but not as cryptographic hashes, for example.

Hash functions are only required to produce the same result for the same input within a single execution of a program; this allows salted hashes that prevent collision denial-of-service attacks.

There is no specialization for C strings. std::hash<const char*> produces a hash of the value of the pointer (the memory address), it does not examine the contents of any character array.

Additional specializations for std::pair and the standard container types, as well as utility functions to compose hashes are available in boost::hash.

[edit] Example
#include <cstddef>
#include <functional>
#include <iomanip>
#include <iostream>
#include <string>
#include <unordered_set>
 
struct S
{
    std::string first_name;
    std::string last_name;
    bool operator==(const S&) const = default; // since C++20
};
 
// Before C++20.
// bool operator==(const S& lhs, const S& rhs)
// {
//     return lhs.first_name == rhs.first_name && lhs.last_name == rhs.last_name;
// }
 
// Custom hash can be a standalone function object.
struct MyHash
{
    std::size_t operator()(const S& s) const noexcept
    {
        std::size_t h1 = std::hash<std::string>{}(s.first_name);
        std::size_t h2 = std::hash<std::string>{}(s.last_name);
        return h1 ^ (h2 << 1); // or use boost::hash_combine
    }
};
 
// Custom specialization of std::hash can be injected in namespace std.
template<>
struct std::hash<S>
{
    std::size_t operator()(const S& s) const noexcept
    {
        std::size_t h1 = std::hash<std::string>{}(s.first_name);
        std::size_t h2 = std::hash<std::string>{}(s.last_name);
        return h1 ^ (h2 << 1); // or use boost::hash_combine
    }
};
 
int main()
{
    std::string str = "Meet the new boss...";
    std::size_t str_hash = std::hash<std::string>{}(str);
    std::cout << "hash(" << std::quoted(str) << ") =\t" << str_hash << '\n';
 
    S obj = {"Hubert", "Farnsworth"};
    // Using the standalone function object.
    std::cout << "hash(" << std::quoted(obj.first_name) << ", "
              << std::quoted(obj.last_name) << ") =\t"
              << MyHash{}(obj) << " (using MyHash) or\n\t\t\t\t"
              << std::hash<S>{}(obj) << " (using injected specialization)\n";
 
    // Custom hash makes it possible to use custom types in unordered containers.
    // The example will use the injected std::hash<S> specialization above,
    // to use MyHash instead, pass it as a second template argument.
    std::unordered_set<S> names = {obj, {"Bender", "Rodriguez"}, {"Turanga", "Leela"}};
    for (auto const& s: names)
        std::cout << std::quoted(s.first_name) << ' '
                  << std::quoted(s.last_name) << '\n';
}

Possible output:

hash("Meet the new boss...") =  10656026664466977650
hash("Hubert", "Farnsworth") =  12922914235676820612 (using MyHash) or
                                12922914235676820612 (using injected specialization)
"Bender" "Rodriguez"
"Turanga" "Leela"
"Hubert" "Farnsworth"
[edit] Defect reports

The following behavior-changing defect reports were applied retroactively to previously published C++ standards.

DR Applied to Behavior as published Correct behavior LWG 2119 C++11 specializations for extended integer types were missing provided LWG 2148 C++11 specializations for enumerations were missing provided LWG 2543 C++11 std::hash might not be SFINAE-friendly made SFINAE-friendly LWG 2817 C++11 specialization for std::nullptr_t was missing provided

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4