static const int digits10;
(until C++11)static constexpr int digits10;
(since C++11)The value of std::numeric_limits<T>::digits10 is the number of base-10 digits that can be represented by the type T
without change, that is, any number with this many significant decimal digits can be converted to a value of type T
and back to decimal form, without change due to rounding or overflow. For base-radix types, it is the value of digits()
(digits - 1 for floating-point types) multiplied by \(\small \log_{10}{radix}\)log10(radix) and rounded down.
An 8-bit binary type can represent any two-digit decimal number exactly, but 3-digit decimal numbers 256..999 cannot be represented. The value of digits10
for an 8-bit type is 2 (8 * std::log10(2) is 2.41)
The standard 32-bit IEEE 754 floating-point type has a 24 bit fractional part (23 bits written, one implied), which may suggest that it can represent 7 digit decimals (24 * std::log10(2) is 7.22), but relative rounding errors are non-uniform and some floating-point values with 7 decimal digits do not survive conversion to 32-bit float and back: the smallest positive example is 8.589973e9, which becomes 8.589974e9 after the roundtrip. These rounding errors cannot exceed one bit in the representation, and digits10
is calculated as (24 - 1) * std::log10(2), which is 6.92. Rounding down results in the value 6.
Likewise, the 16-digit string 9007199254740993 does not survive text->double->text roundtrip, becoming 9007199254740992: the 64-bit IEEE 754 type double guarantees this roundtrip only for 15 decimal digits.
[edit] See also number of decimal digits necessary to differentiate all values of this typeradix
digits that can be represented without change
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4