A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://en.cppreference.com/w/cpp/language/../numeric/special_functions/beta.html below:

std::beta, std::betaf, std::betal - cppreference.com

(1) float       beta ( float x, float y );

double      beta ( double x, double y );

long double beta ( long double x, long double y );
(since C++17)
(until C++23)

/* floating-point-type */ beta( /* floating-point-type */ x,
                                /* floating-point-type */ y );

(since C++23)

float       betaf( float x, float y );

(2) (since C++17)

long double betal( long double x, long double y );

(3) (since C++17)

template< class Arithmetic1, class Arithmetic2 >
/* common-floating-point-type */ beta( Arithmetic1 x, Arithmetic2 y );

(A) (since C++17) 1-3)

Computes the

Beta function

of

x

and

y

.

The library provides overloads of std::beta for all cv-unqualified floating-point types as the type of the parameters x and y.(since C++23)

A) Additional overloads are provided for all other combinations of arithmetic types.

[edit] Parameters x, y - floating-point or integer values [edit] Return value

If no errors occur, value of the beta function of

x

and

y

, that is

\(\int_{0}^{1}{ {t}^{x-1}{(1-t)}^{y-1}\mathsf{d}t}\)1
0
tx-1
(1-t)(y-1)
dt

, or, equivalently,

\(\frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}\)

is returned.

[edit] Error handling

Errors may be reported as specified in math_errhandling.

[edit] Notes

Implementations that do not support C++17, but support ISO 29124:2010, provide this function if __STDCPP_MATH_SPEC_FUNCS__ is defined by the implementation to a value at least 201003L and if the user defines __STDCPP_WANT_MATH_SPEC_FUNCS__ before including any standard library headers.

Implementations that do not support ISO 29124:2010 but support TR 19768:2007 (TR1), provide this function in the header tr1/cmath and namespace std::tr1.

An implementation of this function is also available in boost.math.

std::beta(x, y) equals std::beta(y, x).

When

x

and

y

are positive integers,

std::beta(x, y)

equals

\(\frac{(x-1)!(y-1)!}{(x+y-1)!}\)

. Binomial coefficients can be expressed in terms of the beta function:

\(\binom{n}{k} = \frac{1}{(n+1)B(n-k+1,k+1)}\)⎛
⎜
⎝
n
k
⎞
⎟
⎠
=

.

The additional overloads are not required to be provided exactly as (A). They only need to be sufficient to ensure that for their first argument num1 and second argument num2:

(until C++23)

If num1 and num2 have arithmetic types, then std::beta(num1, num2) has the same effect as std::beta(static_cast</* common-floating-point-type */>(num1),
          static_cast</* common-floating-point-type */>(num2))
, where /* common-floating-point-type */ is the floating-point type with the greatest floating-point conversion rank and greatest floating-point conversion subrank between the types of num1 and num2, arguments of integer type are considered to have the same floating-point conversion rank as double.

If no such floating-point type with the greatest rank and subrank exists, then overload resolution does not result in a usable candidate from the overloads provided.

(since C++23) [edit] Example
#include <cassert>
#include <cmath>
#include <iomanip>
#include <iostream>
#include <numbers>
#include <string>
 
long binom_via_beta(int n, int k)
{
    return std::lround(1 / ((n + 1) * std::beta(n - k + 1, k + 1)));
}
 
long binom_via_gamma(int n, int k)
{
    return std::lround(std::tgamma(n + 1) /
                      (std::tgamma(n - k + 1) * 
                       std::tgamma(k + 1)));
}
 
int main()
{
    std::cout << "Pascal's triangle:\n";
    for (int n = 1; n < 10; ++n)
    {
        std::cout << std::string(20 - n * 2, ' ');
        for (int k = 1; k < n; ++k)
        {
            std::cout << std::setw(3) << binom_via_beta(n, k) << ' ';
            assert(binom_via_beta(n, k) == binom_via_gamma(n, k));
        }
        std::cout << '\n';
    }
 
    // A spot-check
    const long double p = 0.123; // a random value in [0, 1]
    const long double q = 1 - p;
    const long double π = std::numbers::pi_v<long double>;
    std::cout << "\n\n" << std::setprecision(19)
              << "β(p,1-p)   = " << std::beta(p, q) << '\n'
              << "π/sin(π*p) = " << π / std::sin(π * p) << '\n';
}

Output:

Pascal's triangle:
 
                  2
                3   3
              4   6   4
            5  10  10   5
          6  15  20  15   6
        7  21  35  35  21   7
      8  28  56  70  56  28   8
    9  36  84 126 126  84  36   9
 
β(p,1-p)   = 8.335989149587307836
π/sin(π*p) = 8.335989149587307834
[edit] See also [edit] External links

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4