double beta ( double x, double y );
/* floating-point-type */ beta( /* floating-point-type */ x,
/* floating-point-type */ y );
float betaf( float x, float y );
(2) (since C++17)long double betal( long double x, long double y );
(3) (since C++17)template< class Arithmetic1, class Arithmetic2 >
/* common-floating-point-type */ beta( Arithmetic1 x, Arithmetic2 y );
Computes the
Beta functionof
xand
y.
The library provides overloads ofstd::beta
for all cv-unqualified floating-point types as the type of the parameters x and y.(since C++23)
A) Additional overloads are provided for all other combinations of arithmetic types.
[edit] Parameters x, y - floating-point or integer values [edit] Return valueIf no errors occur, value of the beta function of
xand
y, that is
\(\int_{0}^{1}{ {t}^{x-1}{(1-t)}^{y-1}\mathsf{d}t}\)∫1, or, equivalently,
\(\frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}\)is returned.
[edit] Error handlingErrors may be reported as specified in math_errhandling.
Implementations that do not support C++17, but support ISO 29124:2010, provide this function if __STDCPP_MATH_SPEC_FUNCS__
is defined by the implementation to a value at least 201003L and if the user defines __STDCPP_WANT_MATH_SPEC_FUNCS__
before including any standard library headers.
Implementations that do not support ISO 29124:2010 but support TR 19768:2007 (TR1), provide this function in the header tr1/cmath
and namespace std::tr1
.
An implementation of this function is also available in boost.math.
std::beta(x, y) equals std::beta(y, x).
When
xand
yare positive integers,
std::beta(x, y)equals
\(\frac{(x-1)!(y-1)!}{(x+y-1)!}\). Binomial coefficients can be expressed in terms of the beta function:
\(\binom{n}{k} = \frac{1}{(n+1)B(n-k+1,k+1)}\)â.
The additional overloads are not required to be provided exactly as (A). They only need to be sufficient to ensure that for their first argument num1 and second argument num2:
If num1 and num2 have arithmetic types, then std::beta(num1, num2) has the same effect as std::beta(static_cast</* common-floating-point-type */>(num1),
static_cast</* common-floating-point-type */>(num2)), where /* common-floating-point-type */ is the floating-point type with the greatest floating-point conversion rank and greatest floating-point conversion subrank between the types of num1 and num2, arguments of integer type are considered to have the same floating-point conversion rank as double.
If no such floating-point type with the greatest rank and subrank exists, then overload resolution does not result in a usable candidate from the overloads provided.
(since C++23) [edit] Example#include <cassert> #include <cmath> #include <iomanip> #include <iostream> #include <numbers> #include <string> long binom_via_beta(int n, int k) { return std::lround(1 / ((n + 1) * std::beta(n - k + 1, k + 1))); } long binom_via_gamma(int n, int k) { return std::lround(std::tgamma(n + 1) / (std::tgamma(n - k + 1) * std::tgamma(k + 1))); } int main() { std::cout << "Pascal's triangle:\n"; for (int n = 1; n < 10; ++n) { std::cout << std::string(20 - n * 2, ' '); for (int k = 1; k < n; ++k) { std::cout << std::setw(3) << binom_via_beta(n, k) << ' '; assert(binom_via_beta(n, k) == binom_via_gamma(n, k)); } std::cout << '\n'; } // A spot-check const long double p = 0.123; // a random value in [0, 1] const long double q = 1 - p; const long double Ï = std::numbers::pi_v<long double>; std::cout << "\n\n" << std::setprecision(19) << "β(p,1-p) = " << std::beta(p, q) << '\n' << "Ï/sin(Ï*p) = " << Ï / std::sin(Ï * p) << '\n'; }
Output:
Pascal's triangle: 2 3 3 4 6 4 5 10 10 5 6 15 20 15 6 7 21 35 35 21 7 8 28 56 70 56 28 8 9 36 84 126 126 84 36 9 β(p,1-p) = 8.335989149587307836 Ï/sin(Ï*p) = 8.335989149587307834[edit] See also [edit] External links
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4