int exponent
(1) float scalbn ( float num, int exp );double scalbn ( double num, int exp );
constexpr /* floating-point-type */
scalbn ( /* floating-point-type */ num, int exp );
float scalbnf( float num, int exp );
(2) (since C++11)long double scalbnl( long double num, int exp );
(3) (since C++11)long exponent
(4) float scalbln ( float num, long exp );double scalbln ( double num, long exp );
constexpr /* floating-point-type */
scalbln ( /* floating-point-type */ num, long exp );
float scalblnf( float num, long exp );
(5) (since C++11)long double scalblnl( long double num, long exp );
(6) (since C++11)template< class Integer >
double scalbn( Integer num, int exp );
template< class Integer >
double scalbln( Integer num, long exp );
Multiplies a floating point value
numby
FLT_RADIXraised to power
exp.
The library provides overloads ofstd::scalbn
and std::scalbln
for all cv-unqualified floating-point types as the type of the parameter num.(since C++23)
A,B) Additional overloads are provided for all integer types, which are treated as double.
[edit] Parameters num - floating-point or integer value exp - integer value [edit] Return valueIf no errors occur, num multiplied by FLT_RADIX to the power of exp (num×FLT_RADIXexp
) is returned.
If a range error due to overflow occurs, ±HUGE_VAL, ±HUGE_VALF
, or ±HUGE_VALL
is returned.
If a range error due to underflow occurs, the correct result (after rounding) is returned.
[edit] Error handlingErrors are reported as specified in math_errhandling.
If the implementation supports IEEE floating-point arithmetic (IEC 60559),
On binary systems (where FLT_RADIX is 2), std::scalbn
is equivalent to std::ldexp.
Although std::scalbn
and std::scalbln
are specified to perform the operation efficiently, on many implementations they are less efficient than multiplication or division by a power of two using arithmetic operators.
The function name stands for "new scalb", where scalb
was an older non-standard function whose second argument had floating-point type.
The std::scalbln
function is provided because the factor required to scale from the smallest positive floating-point value to the largest finite one may be greater than 32767, the standard-guaranteed INT_MAX. In particular, for the 80-bit long double, the factor is 32828.
The GNU implementation does not set errno
regardless of math_errhandling
.
The additional overloads are not required to be provided exactly as (A,B). They only need to be sufficient to ensure that for their argument num of integer type:
#include <cerrno> #include <cfenv> #include <cmath> #include <cstring> #include <iostream> // #pragma STDC FENV_ACCESS ON int main() { std::cout << "scalbn(7, -4) = " << std::scalbn(7, -4) << '\n' << "scalbn(1, -1074) = " << std::scalbn(1, -1074) << " (minimum positive subnormal double)\n" << "scalbn(nextafter(1,0), 1024) = " << std::scalbn(std::nextafter(1,0), 1024) << " (largest finite double)\n"; // special values std::cout << "scalbn(-0, 10) = " << std::scalbn(-0.0, 10) << '\n' << "scalbn(-Inf, -1) = " << std::scalbn(-INFINITY, -1) << '\n'; // error handling errno = 0; std::feclearexcept(FE_ALL_EXCEPT); std::cout << "scalbn(1, 1024) = " << std::scalbn(1, 1024) << '\n'; if (errno == ERANGE) std::cout << " errno == ERANGE: " << std::strerror(errno) << '\n'; if (std::fetestexcept(FE_OVERFLOW)) std::cout << " FE_OVERFLOW raised\n"; }
Possible output:
scalbn(7, -4) = 0.4375 scalbn(1, -1074) = 4.94066e-324 (minimum positive subnormal double) scalbn(nextafter(1,0), 1024) = 1.79769e+308 (largest finite double) scalbn(-0, 10) = -0 scalbn(-Inf, -1) = -inf scalbn(1, 1024) = inf errno == ERANGE: Numerical result out of range FE_OVERFLOW raised[edit] See also
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4