Rounding to floating-point types
(1) float round ( float num );double round ( double num );
constexpr /* floating-point-type */
round ( /* floating-point-type */ num );
float roundf( float num );
(2) (since C++11)long double roundl( long double num );
(3) (since C++11)Rounding to long
(4) long lround ( float num );long lround ( double num );
constexpr long lround( /* floating-point-type */ num );
(since C++23)long lroundf( float num );
(5) (since C++11)long lroundl( long double num );
(6) (since C++11)Rounding to long long
(7) long long llround ( float num );long long llround ( double num );
constexpr long long llround( /* floating-point-type */ num );
(since C++23)long long llroundf( float num );
(8) (since C++11)long long llroundl( long double num );
(9) (since C++11)template< class Integer >
double round( Integer num );
template< class Integer >
long lround( Integer num );
template< class Integer >
long long llround( Integer num );
1-3) Computes the nearest integer value to num (in floating-point format), rounding halfway cases away from zero, regardless of the current rounding mode. The library provides overloads of std::round
for all cv-unqualified floating-point types as the type of the parameter num.(since C++23)
4-9) Computes the nearest integer value to num (in integer format), rounding halfway cases away from zero, regardless of the current rounding mode. The library provides overloads of std::lround
and std::llround
for all cv-unqualified floating-point types as the type of the parameter num.(since C++23)
A-C) Additional overloads are provided for all integer types, which are treated as double.
[edit] Parameters num - floating-point or integer value [edit] Return valueIf no errors occur, the nearest integer value to num, rounding halfway cases away from zero, is returned.
Return value
num
If a domain error occurs, an implementation-defined value is returned.
[edit] Error handlingErrors are reported as specified in math_errhandling.
If the result of std::lround
or std::llround
is outside the range representable by the return type, a domain error or a range error may occur.
If the implementation supports IEEE floating-point arithmetic (IEC 60559),
std::round
function:
std::lround
and std::llround
functions:
FE_INEXACT may be (but is not required to be) raised by std::round
when rounding a non-integer finite value.
The largest representable floating-point values are exact integers in all standard floating-point formats, so std::round
never overflows on its own; however the result may overflow any integer type (including std::intmax_t), when stored in an integer variable.
POSIX specifies that all cases where std::lround
or std::llround
raise FE_INEXACT are domain errors.
The double version of std::round
behaves as if implemented as follows:
The additional overloads are not required to be provided exactly as (A-C). They only need to be sufficient to ensure that for their argument num of integer type:
#include <cassert> #include <cfenv> #include <cfloat> #include <climits> #include <cmath> #include <iostream> // #pragma STDC FENV_ACCESS ON double custom_round(double x) { const int save_round = std::fegetround(); std::fesetround(FE_TOWARDZERO); const double result = std::rint(std::copysign(0.5 + std::fabs(x), x)); std::fesetround(save_round); return result; } void test_custom_round() { for (const double x : { 0.0, 0.3, 0.5 - DBL_EPSILON / 2, 0.5, 0.5 + DBL_EPSILON / 2, 0.7, 1.0, 2.3, 2.5, 2.7, 3.0, static_cast<double>(INFINITY) }) assert(round(+x) == custom_round(+x) && round(-x) == custom_round(-x)); } int main() { test_custom_round(); std::cout << std::showpos; // round std::cout << "round(+2.3) = " << std::round(2.3) << " round(+2.5) = " << std::round(2.5) << " round(+2.7) = " << std::round(2.7) << '\n' << "round(-2.3) = " << std::round(-2.3) << " round(-2.5) = " << std::round(-2.5) << " round(-2.7) = " << std::round(-2.7) << '\n'; std::cout << "round(-0.0) = " << std::round(-0.0) << '\n' << "round(-Inf) = " << std::round(-INFINITY) << '\n'; // lround std::cout << "lround(+2.3) = " << std::lround(2.3) << " lround(+2.5) = " << std::lround(2.5) << " lround(+2.7) = " << std::lround(2.7) << '\n' << "lround(-2.3) = " << std::lround(-2.3) << " lround(-2.5) = " << std::lround(-2.5) << " lround(-2.7) = " << std::lround(-2.7) << '\n'; std::cout << "lround(-0.0) = " << std::lround(-0.0) << '\n' << "lround(-Inf) = " << std::lround(-INFINITY) << '\n'; // error handling std::feclearexcept(FE_ALL_EXCEPT); std::cout << "std::lround(LONG_MAX+1.5) = " << std::lround(LONG_MAX + 1.5) << '\n'; if (std::fetestexcept(FE_INVALID)) std::cout << " FE_INVALID was raised\n"; }
Possible output:
round(+2.3) = +2 round(+2.5) = +3 round(+2.7) = +3 round(-2.3) = -2 round(-2.5) = -3 round(-2.7) = -3 round(-0.0) = -0 round(-Inf) = -inf lround(+2.3) = +2 lround(+2.5) = +3 lround(+2.7) = +3 lround(-2.3) = -2 lround(-2.5) = -3 lround(-2.7) = -3 lround(-0.0) = +0 lround(-Inf) = -9223372036854775808 std::lround(LONG_MAX+1.5) = -9223372036854775808 FE_INVALID was raised[edit] See also
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4